INTENDED USE
The ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System is an enzyme-linked immunosorbent assay (ELISA) for the qualitative presumptive detection of total (IgG and IgM) antibodies to Borrelia burgdorferi in human serum. This ELISA should only be used for patients with signs and symptoms that are consistent with Lyme disease. Equivocal or positive results must be supplemented by testing with a standardized Western blot procedure. Positive supplemental results are supportive evidence of exposure to Borrelia burgdorferi and can be used to support a clinical diagnosis of Lyme disease.

SIGNIFICANCE AND BACKGROUND
Borrelia burgdorferi is a spirochete that causes Lyme disease. Ticks of the genus Ixodes transmit the organism. In endemic areas, these ticks reside on vegetation and animals such as deer, mice, dogs, horses, and birds. Borrelia burgdorferi infection shares features with other spirochetal infections (diseases caused by three genera in humans: Treponema, Borrelia, and Leptospira). Skin is the portal of entry for B. burgdorferi and the tick bite often causes a characteristic rash called erythema chronicum migrans (ECM). ECM develops around the tick bite in 60 to 80% of patients. Spirochetemia occurs early with wide spread dissemination through tissue and body fluids.

Lyme disease occurs in three stages, often with intervening latent periods and with different clinical manifestations. In Lyme disease, there are generally three stages of disease often with overlapping symptoms. Symptoms vary according to the sites affected by the infection such as joints, skin, central nervous system, heart, eye, bone, spleen, and kidney. Late disease is most often associated with arthritis or CNS syndromes. Asymptomatic subclinical infection is possible and infection may not become clinically evident until the later stages.

Patients with early infection produce IgM antibodies during the first few weeks after onset of ECM and produce IgG antibodies more slowly (1). Tests only detect IgM during the first month after onset of illness; the majority of patients develop IgG antibodies within one month. Both IgG and IgM antibodies can remain detectable for years.

Isolation of B. burgdorferi from skin biopsy, blood, and spinal fluid has been reported (2). However, these direct culture detection methods may not be practical in the large-scale diagnosis of Lyme borreliosis. Serological testing methods for antibodies to B. burgdorferi include indirect fluorescent antibody (IFA) staining, immunoblotting, and enzyme immunoassay (ELISA).

B. burgdorferi is antigenically complex with strains that vary considerably. Early antibody responses often are to flagellin that has cross-reactive components. Patients in early stages of infection may not produce detectable levels of antibody. In addition, early antibiotic therapy after ECM may diminish or abrogate good antibody response. Some patients may never generate detectable antibody levels. Thus, serological tests for antibodies to B. burgdorferi have low sensitivity and specificity and because of such inaccuracies, healthcare professionals do not rely on these tests to establish a diagnosis of Lyme disease (3, 4).

In 1994, the Second National Conference on Serological Diagnosis of Lyme Disease recommended a two-step testing system toward standardizing laboratory serologic testing for B. burgdorferi. Because ELISA and IFA methods were not sufficiently specific to support clinical diagnosis, it was recommended that positive or equivocal results from a sensitive ELISA or IFA (first step) should be further tested, or supplemented, by using a standardized Western Blot method (second step) for detecting antibodies to B. burgdorferi. Western Blot assays for antibodies to B. burgdorferi are supplemental rather than confirmatory because their specificity is less than optimal, particularly for detecting IgM. Two-step positive results provide supportive evidence of exposure to B. burgdorferi. These results could support a clinical diagnosis of Lyme disease, but scientists suggest avoiding the use as a sole criterion for diagnosis.

PRINCIPLE OF THE ASSAY
The ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System is designed to detect IgM and IgG class antibodies to Borrelia burgdorferi in human sera. Creation of the sensitized wells of plastic microwell strips occurred using passive adsorption with Borrelia burgdorferi antigen. The test procedure involves three incubation steps:

1. Test sera (properly diluted) are incubated in antigen coated microwells. Any antigen specific antibody in the sample will bind to the immobilized antigen. The plate is washed to remove unbound antibody and other serum components. The wells are washed to remove unreacted Conjugate.

2. Peroxidase Conjugated goat anti-human IgM/IgG is added to the wells and the plate is incubated. The Conjugate will react with IgM and/or IgG antibody immobilized on the solid phase in step 1.

3. The microwells containing immobilized peroxidase Conjugate are incubated with peroxidase Substrate Solution. Hydrolysis of the Substrate by peroxidase produces a color change. After a period of time the reaction is stopped and the color intensity of the solution is measured photometrically. The color intensity of the solution depends upon the antibody concentration in the original test sample.

TEST SYSTEM COMPONENTS
Materials Provided:
Each Test System contains the following components in sufficient quantities to perform the number of tests indicated on the packaging label. NOTE: The following components contain Sodium Azide as a preservative at a concentration of <0.1% (w/v): Controls, Calibrator and Sample Diluent.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATE</td>
<td>Plate: 96 wells configured in twelve, 1x8-well, strips coated with inactivated B. burgdorferi (B31 Strain) antigen. The strips are packaged in a strip holder and sealed in an envelope with desiccant.</td>
</tr>
<tr>
<td>CONI</td>
<td>Conjugate: Conjugated (horseradish peroxidase) goat anti-human IgG in 15mL, white-capped vial(s). Ready to use.</td>
</tr>
<tr>
<td>CONTROL +</td>
<td>Positive Control (Human Serum): 0.35mL, red-capped vial(s).</td>
</tr>
<tr>
<td>CAL</td>
<td>Calibrator (Human Serum): 0.5mL, blue-capped vial(s).</td>
</tr>
<tr>
<td>CONTROL -</td>
<td>Negative Control (Human Serum): 0.35mL, green-capped vial(s).</td>
</tr>
<tr>
<td>DIL SPE</td>
<td>Sample Diluent: 30mL, green-capped, bottle(s) containing Tween-20, bovine serum albumin and phosphate-buffered saline. Green solution. Ready to use.</td>
</tr>
<tr>
<td>SOLN TMB</td>
<td>TMB: 15mL, amber-capped, amber bottle(s) containing 3, 3’, 5, 5’ - tetramethylbenzidine (TMB). Ready to use.</td>
</tr>
<tr>
<td>SOLN STOP</td>
<td>Stop Solution: 15mL, red-capped, bottle(s) containing 1M H₂SO₄, 0.7M HCl. Ready to use.</td>
</tr>
<tr>
<td>WASHBUF 10X</td>
<td>Wash Buffer Concentrate (10X): Dilute 1 part concentrate + 9 parts deionized or distilled water. 100mL, clear-capped, bottle(s) containing a 10X concentrated phosphate-buffered-saline and Tween-20 solution (blue solution). NOTE: 1X solution will have a pH of 7.2 ± 0.2.</td>
</tr>
</tbody>
</table>

ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System
NOTES:
1. The following components are not Test System Lot Number dependent and may be used interchangeably with the ZEUS ELISA Test Systems: TMB, Stop Solution, and Wash Buffer.
2. Test System also contains a Component Label containing lot specific information inside the Test System box.

PRECAUTIONS

1. For In Vitro diagnostic use.
2. Follow normal precautions exercised in handling laboratory reagents. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. Wear suitable protective clothing, gloves, and eye/face protection. Do not breathe vapor. Dispose of waste observing all local, state, and federal laws.
3. The wells of the ELISA plate do not contain viable organisms. However, consider the strips potentially biohazardous materials and handle accordingly.
4. The Controls are potentially biohazardous materials. Source materials from which these products were derived were found negative for HIV-1 antigen, HBsAg and for antibodies against HIV and HBV by approved test methods. However, since no test method can offer complete assurance that infectious agents are absent, handle these products at the Biosafety Level 2 as recommended for any potentially infectious human serum or blood specimen in the Centers for Disease Control/National Institutes of Health manual “Biosafety in Microbiological and Biomedical Laboratories”: Current Edition; and OSHA’s Standard for Bloodborne Pathogens (16).
5. Adherence to the specified time and temperature of incubations is essential for accurate results. All reagents must be allowed to reach room temperature (20 - 25°C) before starting the assay. Return unused reagents to refrigerated temperature immediately after use.
6. Improper washing could cause false positive or false negative results. Be sure to minimize the amount of any residual wash solution; (e.g., by blotting or aspiration) before adding Conjugate or Substrate. Do not allow the wells to dry out between incubations.
7. The Sample Diluent, Controls, and Calibrator contain Sodium Azide at a concentration of <0.1% (w/v). Sodium Azide has been reported to form lead or copper azides in laboratory plumbing which may cause explosions upon hammering. To prevent, replace with severely thoroughly with water after disposing of solution containing Sodium Azide.
8. The Stop Solution is TOXIC if inhaled, has contact with skin or if swallowed. It can cause burns. In case of accident or ill feelings, seek medical advice immediately.
9. The TMB Solution is HARMFUL. It is irritating to eyes, respiratory system and skin.
10. The Wash Buffer concentrate is an IRRITANT. It is irritating to eyes, respiratory system and skin.
11. Wipe the bottom of the plate free of residual liquid and/or fingerprints that can alter optical density (OD) readings.
12. Dilution or adulteration of these reagents may generate erroneous results. Do not expose reagents to strong light during storage or incubation.
13. Do not use reagents from other sources or manufacturers.
14. TMB Solution should be colorless, very pale yellow, very pale green, or very pale blue when used. Contamination of the TMB with Conjugate or other oxidants will cause the solution to change color prematurely. Do not use the TMB if it is noticeably blue in color.
15. Never pipette by mouth. Avoid contact of reagents and patient specimens with skin and mucous membranes.
16. Avoid microbial contamination of reagents. Incorrect results may occur.
17. Cross contamination of reagents and/or samples could cause erroneous results.
18. Reusable glassware must be washed and thoroughly rinsed free of all detergents.
19. Avoid splashing or generation of aerosols.
20. Do not expose reagents to strong light during storage or incubation.
21. Allowing the microwell strips and holder to equilibrate to room temperature prior to opening the protective envelope will protect the wells from condensation.
22. Collect the wash solution in a disposal basin. Treat the waste solution with disinfectant (i.e.: 10% household bleach - 0.5% Sodium Hypochlorite). Avoid exposure of reagents to bleach fumes.
23. Caution: Neutralize any liquid waste at an acidic pH before adding to a bleach solution.
24. Do not use ELISA plate if the indicator strip on the desiccant pouch has turned from blue to pink.
25. Do not allow the Conjugate to come in contact with containers or instruments that may have previously contained a solution utilizing Sodium Azide as a preservative. Residual amounts of Sodium Azide may destroy the Conjugate’s enzymatic activity.
26. Do not expose any of the reactive reagents to bleach-containing solutions or to any strong odors from bleach-containing solutions. Trace amounts of bleach (sodium hypochlorite) may destroy the biological activity of many of the reactive reagents within this Test System.

MATERIALS REQUIRED BUT NOT PROVIDED

1. ELISA microwell reader capable of reading at a wavelength of 450nm.
2. Pipettes capable of accurately delivering 10 - 200μL.
3. Multichannel pipette capable of accurately delivering 50 - 200μL.
4. Reagent reservoirs for multichannel pipettes.
5. Distilled or deionized water.
6. Wash bottle or microwell washing system.
7. Pipette tips.
9. Laboratory timer to monitor incubation steps.
10. Disposal basin and disinfectant (i.e.: 10% household bleach - 0.5% Sodium Hypochlorite).

STORAGE CONDITIONS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2°C - 8°C</td>
<td>Coated Microwell Strips: Immediately reseal extra strips with desiccant and return to proper storage. After opening - strips are stable for 60 days, as long as the indicator strips on the desiccant pouch remains blue.</td>
</tr>
<tr>
<td>2°C - 25°C</td>
<td>Unopened Test System, Calibrator, Positive Control, Negative Control, TMB, Sample Diluent</td>
</tr>
</tbody>
</table>

ZEUS ELISA B. burgdorferi IgG/IgM Test System
(Rev. Date 9/22/2016)
SPECIMEN COLLECTION
1. ZEUS Scientific recommends that the user carry out specimen collection in accordance with CLSI document M29: Protection of Laboratory Workers from Infectious Disease (Current Edition).
2. No known test method can offer complete assurance that human blood samples will not transmit infection. Therefore, consider all blood derivatives potentially infectious.
3. Use only freshly drawn and properly refrigerated sera obtained by approved aseptic venipuncture procedures in this assay (14, 15). Do not use if there are any added anticoagulants or preservatives. Avoid using hemolyzed, lipemic, or bacterially contaminated sera.
4. Store sample at room temperature for no longer than 8 hours. If testing is not performed within 8 hours, sera may be stored between 2 - 8°C, for no longer than 48 hours. If delay in testing is anticipated, store test sera at -20°C or lower. Avoid multiple freeze/thaw cycles which may cause loss of antibody activity and give erroneous results. It is the responsibility of the individual laboratory to use all available references and/or its own studies to determine stability criteria for its laboratory (17).

ASSAY PROCEDURE
1. Remove the individual components from storage and allow them to warm to room temperature (20 - 25°C).
2. Determine the number of microwells needed. Allow for six Control/Calibrator determinations (one Reagent Blank, one Negative Control, three Calibrators and one Positive Control) per run. Run a Reagent Blank on each assay. Check software and reader requirements for the correct Controls/Calibrator configurations. Return unused strips to the resealable pouch with desiccant, seal, and return to storage between 2 - 8°C.

<table>
<thead>
<tr>
<th>EXAMPLE PLATE SET-UP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

3. Prepare a 1:21 dilution (e.g.: 10µL of serum + 200µL of Sample Diluent) of the Negative Control, Calibrator, Positive Control, and each patient serum.
4. To individual wells, add 100µL of each diluted Control, Calibrator and patient specimen. Ensure that the samples are properly mixed. Use a different pipette tip for each sample.
5. Add 100µL of Sample Diluent to well A1 as a Reagent Blank. Check software and reader requirements for the correct Reagent Blank well configuration.
6. Incubate the plate at room temperature (20 - 25°C) for 25 ± 5 minutes.
7. Wash the microwell strips 5 times.
 a. Manual Wash Procedure:
 1. Vigorously shake out the liquid from the wells.
 2. Fill each microwell with Wash Buffer. Make sure no air bubbles are trapped in the wells.
 3. Repeat steps 1. and 2. for a total of 5 washes.
 4. Shake out the wash solution from all the wells. Invert the plate over a paper towel and tap firmly to remove any residual wash solution from the wells. Visually inspect the plate to ensure that no residual wash solution remains. Collect wash solution in a disposable basin and treat with disinfectant at the end of the day’s run.
 b. Automated Wash Procedure:
 If using an automated microwell wash system, set the dispensing volume to 300 - 350µL/well. Set the wash cycle for 5 washes with no delay between washes. If necessary, the microwell plate may be removed from the washer, inverted over a paper towel and tapped firmly to remove any residual wash solution from the microwells.
8. Add 100µL of the Conjugate to each well, including the Reagent Blank well, at the same rate and in the same order as the specimens.
9. Incubate the plate at room temperature (20 - 25°C) for 25 ± 5 minutes.
10. Wash the microwells by following the procedure as described in step 7.
11. Add 100µL of TMB to each well, including the Reagent Blank well, at the same rate and in the same order as the specimens.
12. Incubate the plate at room temperature (20 - 25°C) for 10 - 15 minutes.
13. Stop the reaction by adding 50µL of Stop Solution to each well, including the Reagent Blank well, at the same rate and in the same order as the TMB. Positive samples will turn from blue to yellow. After adding the Stop Solution, tap the plate several times to ensure that the samples are thoroughly mixed.
14. Set the microwell reader to read at a wavelength of 450nm and measure the optical density (OD) of each well against the Reagent Blank. Read the plate within 30 minutes of the addition of the Stop Solution.

ABBREVIATED TEST PROCEDURE
1. Dilute Serum 1:21.
2. Add diluted sample to microwell - 100µL/well.
3. Incubate 25 ± 5 minutes.
4. Wash.
5. Add Conjugate - 100µL/well.
6. Incubate 25 ± 5 minutes.
7. Wash.
8. Add TMB - 100µL/well.
10. Add Stop Solution - 50µL/well - Mix.
11. READ within 30 minutes.

QUALITY CONTROL
1. Each time the assay is performed, the Calibrator must be run in triplicate. A Reagent Blank, Negative Control, and Positive Control must also be included.
2. Calculate the mean of the three Calibrator wells. If any of the three values differ by more than 15% from the mean, discard that value and calculate the mean using the remaining two wells.
3. The mean OD value for the Calibrator, Positive Control, and Negative Control should fall within the following ranges:

<table>
<thead>
<tr>
<th>OD Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Control</td>
<td>≤0.250</td>
</tr>
<tr>
<td>Calibrator</td>
<td>≥0.300</td>
</tr>
<tr>
<td>Positive Control</td>
<td>≥0.500</td>
</tr>
</tbody>
</table>
a. The OD of the Negative Control divided by the mean OD of the Calibrator should be ≤0.9.
b. The OD of the Positive Control divided by the mean OD of the Calibrator should be ≥1.25.
c. If the above conditions are not met the test should be considered invalid and should be repeated.

4. The Positive Control and Negative Control are intended to monitor for substantial reagent failure, but will not ensure precision at the assay Cutoff.
5. Additional Controls may be tested according to guidelines or requirements of local, state, and/or federal regulations or accrediting organizations.

INTERPRETATION OF RESULTS

1. Calculations:
 a. Correction Factor: The manufacturer determined a Cutoff OD Value for positive samples and correlated it to the Calibrator. The Correction Factor (CF) allows for the determination of the Cutoff Value for positive samples. It will also correct for slight day-to-day variations in test results. The Correction Factor is determined for each lot of components and is printed on the Component Label located in the Test System box.
 b. Cutoff OD Value: To obtain the Cutoff OD Value, multiply the CF by the mean OD of the Calibrator determined above.
 (CF x Mean OD of Calibrator = Cutoff OD Value)
 c. Index Values/OD Ratios: Calculate the Index Value/OD Ratio for each specimen by dividing its OD Value by the Cutoff OD from step b.

Example:
<table>
<thead>
<tr>
<th>Mean OD of Calibrator</th>
<th>Correction Factor (CF)</th>
<th>Cutoff OD</th>
<th>Unknown Specimen OD</th>
<th>Specimen Index Value/OD Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.793</td>
<td>0.25</td>
<td>0.198</td>
<td>0.432</td>
<td>0.432 /0.198 = 2.18</td>
</tr>
</tbody>
</table>

2. Interpretations: Index Values/OD Ratios are interpreted as follows.

<table>
<thead>
<tr>
<th></th>
<th>Index Value/OD Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Specimens</td>
<td>≤0.90</td>
</tr>
<tr>
<td>Equivocal Specimens</td>
<td>0.91 - 1.09</td>
</tr>
<tr>
<td>Positive Specimens</td>
<td>≥1.10</td>
</tr>
</tbody>
</table>

1. Sera from patients with other spirochetal diseases (syphilis, yaws, pinta, leptospirosis, and relapsing fever), infectious mononucleosis, or systemic lupus erythematosus may give false positive results (6). Observations of false positive reactions require extensive clinical epidemiologic and additional laboratory workups to determine the specific diagnosis. Technicians can distinguish false positive sera from syphilis patients from true B. burgdorferi disease positive sera by running an RPR or MHA-TP assay on such specimens (7).

2. Drawing serum samples too early after onset of disease, before antibody levels have reached significant levels, results in false negative results (8). In addition, early antibiotic therapy may abort an antibody response to the spirochete (9).

3. Interpret all data in conjunction with clinical symptoms of disease, epidemiologic data, exposure in endemic areas, and results of other laboratory tests.

4. Do not perform screening of the general population. The positive predictive value depends on the pretest likelihood of infection. Only perform testing when clinical symptoms are present or exposure suspected.

5. ZEUS Scientific did not establish performance characteristics of the ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System for samples from individuals vaccinated with B. burgdorferi antigens.

EXPECTED RESULTS

Titers of IgM antibodies to B. burgdorferi peak three to six weeks after onset of ECM and gradually decline thereafter (10). Titers of IgG antibodies are low during ECM but increase in titer during the course of the disease, reaching peak titers during the third weeks after onset of ECM (6, 13). In these patients, obtaining a more complete serological picture by testing acute and convalescent sera is necessary. Most patients (94 - 97%) with neurological complications and essentially all patients with arthritis have elevated IgG titers to the spirochete (6, 12). In later stages, a positive antibody test may help distinguish B. burgdorferi disease from viral meningitis or unexplained nerve palsies. A positive antibody test may be particularly useful in differentiating B. burgdorferi arthritis from rheumatoid arthritis, juvenile arthritis, and Reiter’s Syndrome (10). Patients without signs or clinical features of B. burgdorferi disease should test negative with the ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System.

PERFORMANCE CHARACTERISTICS

1. Comparative Study

The ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System was compared with a commercially available ELISA, and a reference IFA B. burgdorferi assay for the detection of antibodies in two, double blind clinical studies. The first study compared the ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System to a commercially available IFA B. burgdorferi test system for the detection of antibodies in 199 serum samples randomly processed at a large medical center on the east coast. Depicted in Table 1 are the results of this double blind study.

Table 1: ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System vs. Commercially Available IFA Test

<table>
<thead>
<tr>
<th>B. burgdorferi IFA Procedure</th>
<th>ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>58</td>
</tr>
<tr>
<td>Negative</td>
<td>7</td>
</tr>
</tbody>
</table>

Analysis of the data in Table 1 reveals a sensitivity of 92%, a specificity of 95%, and an overall concordance of 94%.

The second study compared the ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System to a reference IFA B. burgdorferi test procedure for the detection of IgG and IgM antibodies in 263 serum samples randomly processed at a large reference laboratory. The results of this double blind study are depicted in Table 2.

Table 2: ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System

<table>
<thead>
<tr>
<th>Reference B. burgdorferi IFA for IgG/IgM</th>
<th>ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>11</td>
</tr>
<tr>
<td>Negative</td>
<td>8</td>
</tr>
</tbody>
</table>

ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System 4

(Rev. Date 9/22/2016)
Statistical analysis of the data in Table 2 show a sensitivity of 85%, and a specificity of 97%. The overall concordance was 96%.

In both clinical studies, repeating all discrepant results yielded identical results. In addition, results showed that IgM positive/IgG negative serum samples (7) tested positive with the ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System, and pooled IgM positive/IgG negative reference sera tested positive with the ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System. These results indicate that the ZEUS ELISA Borrelia burgdorferi IgG/IgM Test System is capable of detecting both IgG and IgM class specific antibodies against B. burgdorferi in individual microtiter wells.

Table 3 shows test results obtained using a serum panel from the CDC. Presented are the results to convey further information on the performance of this assay with a masked, characterized serum panel. This does not imply an endorsement of the assay by the CDC.

Table 3: CDC B. burgdorferi Disease Serum Panel; Stratified by Time After Onset

<table>
<thead>
<tr>
<th>Time from Onset</th>
<th>Positive</th>
<th>Equivocal</th>
<th>Negative</th>
<th>Total</th>
<th>% Agreement with Clinical Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normals</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>75; 3/4</td>
</tr>
<tr>
<td><1 Month</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>100; 6/6</td>
</tr>
<tr>
<td>1 - 2 Months</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>88; 7/8</td>
</tr>
<tr>
<td>3 - 12 Months</td>
<td>18</td>
<td>0</td>
<td>2</td>
<td>20</td>
<td>90; 18/20</td>
</tr>
<tr>
<td>>1 Year</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>16</td>
<td>100; 8/8</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>1</td>
<td>6</td>
<td>47</td>
<td>93 (39/42 Positive) (3/4 Negative)</td>
</tr>
</tbody>
</table>

2. Reproducibility

The intra-assay and inter-assay variation was determined by running eight replicates of positive, borderline, and negative samples on three consecutive days. The results of these assays are as follows:

<table>
<thead>
<tr>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run 1</td>
</tr>
<tr>
<td>Negative</td>
<td>0.42</td>
</tr>
<tr>
<td>Positive</td>
<td>1.65</td>
</tr>
<tr>
<td>Positive</td>
<td>1.20</td>
</tr>
<tr>
<td>Borderline</td>
<td>0.76</td>
</tr>
</tbody>
</table>

3. Cross Reactivity

Sera from patients with North American borreliosis, yaws, pinta, leptospirosis, autoimmune diseases, and syphilis may cross react.

REFERENCES