INTENDED USE

The ZEUS ELISA Cytomegalovirus (CMV) IgG Test System is an enzyme-linked immunosorbent assay (ELISA) for the qualitative detection of IgG class antibodies to cytomegalovirus in human serum. This test is intended to be used to evaluate serologic evidence of previous or primary infection with CMV. This product is not FDA cleared (approved) for use in testing (i.e., screening) blood or plasma donors. This test is intended for In Vitro diagnostic use only.

SIGNIFICANCE AND BACKGROUND

Cytomegalovirus (CMV) infections are widespread and usually asymptomatic; however, the virus may persist as a latent or chronic infection (1). The relatively frequent incidence and often-severe disease in newborns and immunosuppressed individuals clearly establishes this agent as an important human pathogen (2-4). Scientists classify CMV infections as follows:

- Congenital - Acquired before birth.
- Perinatal - Acquired at birth.
- Postnatal - Acquired after birth.

Of the newborn infants congenitally infected with CMV, 95% exhibit no clinically overt disease at birth (5). Of the remaining 5% of infected infants, clinical manifestations range from severe disease with jaundice, hepatosplenomegaly, thrombocytopenic purpura, cranial calcification, and growth retardation to pneumonitis, hydrocephaly or microcephaly and ocular defects (6). Infants with severe manifestations of congenital CMV infection may expire early after birth due to secondary complications; however, most survive with consequent neurological damage (2).

Health professionals must be guarded with the prognosis for congenitally infected infants who are asymptomatic at birth. Ten to 25% of infants may subsequently develop hearing loss (7). Five to 10% of infants may exhibit various degrees of mental retardation and central nervous system motor disorders (5). Surveys show the incidence of congenital CMV infection to be from 0.5 - 2.5%. Consequently, a careful documentation of the long-term effects of intrauterine infection is important (8).

Perinatally infected infants start excreting CMV 3 - 12 weeks after delivery, and with rare exception, remain asymptomatic (9). Acquisition of postnatal CMV infections can occur through close contact with individuals who are shedding the virus (2). CMV has been isolated from saliva, urine, breast milk, cervical secretions, and semen. Consequently, the transmission of the virus may occur through a variety of mechanisms (6 - 8). Sexual transmission of the virus appears to contribute to the acquisition of the virus by young adults (10). Although the acquisition age for CMV infection varies with socioeconomic conditions, only about 10 - 15% of children in the United States are seropositive. By age 35 however, about 50% of the population is seropositive (2 - 4).

The majority of individuals contracting postnatal CMV infections remain asymptomatic (2 - 4). A small percentage of individuals will develop a negative heterophile-antibody infectious mononucleosis syndrome. Characteristics of CMV mononucleosis include fever, lethargy, and atypical lymphocytosis; whereas, in Epstein-Barr virus induced infectious mononucleosis, pharyngitis, lymphadenopathy, and splenomegaly are the chief clinical features (11 - 12).

In immunocompromised patients, CMV infections happen frequently, often from reactivation of latent infection, and may be life-threatening (2 - 4). These patients include allograft recipients, cancer patients, and patients with acquired immunodeficiency syndrome (AIDS) (4, 13, and 15). Clinical manifestations of CMV disease in immunocompromised patients range from CMV mononucleosis to pneumonia, hepatitis, pericarditis, and encephalitis (4).

CMV infections may occur following blood transfusions, and the risk of infection increases with the number of donors and the volume of blood given (4). Seronegative recipients may contract primary infection via blood from a seropositive donor. In seropositive recipients, reactivated latent infection may occur. Most transfusion acquired CMV infections are either subclinical or characterized by CMV mononucleosis (2 - 4). However, in specific groups of patients, considerable morbidity and mortality can result from a transfusion-acquired primary CMV infection. These patients are immunocompromised and include premature infants, pregnant women, cancer patients, and transplant recipients (4 - 14). In these patients, transfusion acquired CMV infections can be prevented by giving only blood from seronegative donors to seronegative recipients (4 - 14).

Serologic procedures, which measure IgG antibodies to CMV, can aid in the diagnosis of CMV infection when testing paired acute and convalescent sera simultaneously and seroconversion, or a significant rise in titer, can be demonstrated (15). In addition, serologic procedures may aid in the prevention of transfusion acquired CMV infections by assessing the serologic status of donors and recipients (4 - 14).

Engvall and Perlman (19, 20) first described the ELISA (enzyme-linked immunosorbent assay) procedure. Since then, scientists have developed ELISA test systems for the detection of a wide variety of different antigens and antibodies, including antibodies to CMV (16, 17, and 21). They have also developed a number of serologic procedures otherwise than ELISA to detect antibodies to CMV. These include complement fixation (16, 18), indirect immunofluorescence (18), indirect hemagglutination (18, 22), and latex agglutination (22). When compared to other serologic tests for detection of antibodies to CMV, ELISA may be a very specific, sensitive, and reliable method for detection of antibodies to CMV (16, 17, and 18). The ELISA procedure allows for an objective determination of antibody status on a single dilution of the test specimen and is suitable for screening large numbers of patient samples.

PRINCIPLE OF THE ASSAY

The ZEUS ELISA CMV IgG Test System is designed to detect IgG class antibodies to CMV in human sera. Creation of the sensitized wells of the plastic microwell strips occurs using passive adsorption with CMV antigen. The test procedure involves three incubation steps:

1. Test sera (properly diluted) are incubated in antigen coated microwells. Any antigen specific antibody in the sample will bind to the immobilized antigen. The plate is washed to remove unbound antibody and other serum components.
2. Peroxidase Conjugated goat anti-human IgG is added to the wells and the plate is incubated. The Conjugate will react with IgG antibody immobilized on the solid phase in step 1. The wells are washed to remove unreacted Conjugate.
3. The microwells containing immobilized peroxidase Conjugate are incubated with peroxidase Substrate Solution. Hydrolysis of the Substrate by peroxidase produces a color change. After a period of time the reaction is stopped and the color intensity of the solution is measured photometrically. The color intensity of the solution depends upon the antibody concentration in the original test sample.

TEST SYSTEM COMPONENTS

Materials Provided:
Each Test System contains the following components in sufficient quantities to perform the number of tests indicated on the packaging label. NOTE: The following components contain Sodium Azide as a preservative at a concentration of <0.1% (w/v): Controls, Calibrator and SAVe Diluent®.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATE</td>
<td>Plate: 96 wells configured in twelve, 1x8-well, strips coated with inactivated cytomegalovirus antigen (strain AD169). The strips are packaged in a strip holder and sealed in an envelope with desiccant.</td>
</tr>
<tr>
<td>CONJ</td>
<td>Conjugate: Conjugated (horseradish peroxidase) goat anti-human IgG (Fc chain specific) in 15mL, white-capped bottle(s). Ready to use.</td>
</tr>
</tbody>
</table>
The following components are not Test System Lot Number dependent and may be used interchangeably with the ZEUS ELISA Test Systems: TMB, Stop Solution, and Wash Buffer. SAVe Diluent® may be used interchangeably with any ZEUS ELISA Test System utilizing Product No. 005CC.

1. For In Vitro diagnostic use.
2. Follow normal precautions exercised in handling laboratory reagents. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. Wear suitable protective clothing, gloves, and eye/face protection. Do not breathe vapor. Dispose of waste observing all local, state, and federal laws.
3. The wells of the ELISA plate do not contain viable organisms. However, consider the strips potentially biohazardous materials. Source materials from which these products were derived were found negative for HIV-1 antigen, HBSAg, and for antibodies against HCV and HIV by approved test methods. However, since no test method can offer complete assurance that infectious agents are absent, handle these products at the Biosafety Level 2 as recommended for any potentially infectious human serum or blood specimen in the Centers for Disease Control/National Institutes of Health manual "Biosafety in Microbiological and Biomedical Laboratories": Current Edition; and OSHA's Standard for Bloodborne Pathogens (9).
4. Adherence to the specified time and temperature of incubations is essential for accurate results. All reagents must be allowed to reach room temperature (20 - 25°C) before starting the assay. Return unused reagents to refrigerated temperature immediately after use.
5. Improper washing could cause false positive or false negative results. Be sure to minimize the amount of any residual wash solution; (e.g., by blotting or aspiration) before adding Conjugate or Substrate. Do not allow the wells to dry out between incubations.
6. The SAVe Diluent®, Controls, and Calibrator should be stored at a concentration of <0.1% (w/v). Sodium Azide has been reported to form lead or copper azides in laboratory plumbing which may cause explosions upon hammering. To prevent, rinse sink thoroughly with water after disposing of solution containing Sodium Azide.
7. The Stop Solution is TOXIC if inhaled, has contact with skin or if swallowed. It can cause burns. In case of accident or ill feelings, seek medical advice immediately.
8. The TMB Solution should be colorless, very pale yellow, very pale green, or very pale blue when used. Contamination of the TMB with Conjugate or other oxidants will cause the solution to change color prematurely. Do not use the TMB if it is noticeably blue in color.
9. Never pipette by mouth. Avoid contact of reagents and patient specimens with skin and mucous membranes.
10. Avoid microbial contamination of reagents. Incorrect results may occur.
11. Do not expose reagents to strong light during storage or incubation.
12. All reagents must be allowed to reach room temperature prior to opening the protective envelope will protect the wells from condensation.
13. Collet the wash solution in a disposal basin. Treat the waste solution with disinfectant (i.e.: 10% household bleach - 0.5% Sodium Hypochlorite). Avoid exposure of reagents to bleach fumes.
15. Do not use ELISA plate if the indicator strip on the desiccant pouch has turned from blue to pink.
16. Do not allow the Conjugate to come in contact with containers or instruments that may have previously contained a solution utilizing Sodium Azide as a preservative. Residual amounts of Sodium Azide may destroy the Conjugate's enzymatic activity.
17. Do not expose any of the reactive reagents to bleach-containing solutions or to any strong odors from bleach-containing solutions. Trace amounts of bleach (sodium hypochlorite) may destroy the biological activity of many of the reactive reagents within this Test System.

MATERIALS REQUIRED BUT NOT PROVIDED

1. ELISA microwell reader capable of reading at a wavelength of 450nm.
2. Pipettes capable of accurately delivering 10 - 200µL.
3. Multichannel pipette capable of accurately delivering 0.5 - 200µL.
4. Reagent reservoirs for multichannel pipettes.
5. Wash bottle or microwell washing system.
6. Distilled or deionized water.
7. One liter graduated cylinder.
8. Serological pipettes.
9. Disposable pipette tips.
11. Laboratory timer to monitor incubation steps.
12. Disposal basin and disinfectant (i.e.: 10% household bleach - 0.5% Sodium Hypochlorite).
STORAGE CONDITIONS

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2°C - 8°C</td>
<td>Coated Microwell Strips: Immediately reseal extra strips with desiccant and return to proper storage. After opening - strips are stable for 60 days, as long as the indicator strips on the desiccant pouch remains blue.</td>
</tr>
<tr>
<td>2°C - 25°C</td>
<td>Unopened Test System, Calibrator, Positive Control, Negative Control, TMB, SAVe Diluent®</td>
</tr>
<tr>
<td></td>
<td>Stop Solution: 2 - 25°C</td>
</tr>
<tr>
<td></td>
<td>Wash Buffer (1X): 20 - 25°C for up to 7 days, 2 - 8°C for 30 days.</td>
</tr>
<tr>
<td></td>
<td>Wash Buffer (10X): 2 - 25°C</td>
</tr>
</tbody>
</table>

SPECIMEN COLLECTION

1. ZEUS Scientific recommends that the user carry out specimen collection in accordance with CLSI document M29: *Protection of Laboratory Workers from Infectious Disease (Current Edition)*.
2. No known test method can offer complete assurance that human blood samples will not transmit infection. Therefore, consider all blood derivatives potentially infectious.
3. Use only freshly drawn and properly refrigerated sera obtained by approved aseptic venipuncture procedures in this assay (8, 9). Do not use if there are any added anticoagulants or preservatives. Avoid using hemolyzed, lipemic, or bacterially contaminated sera.
4. Store sample at room temperature for no longer than 8 hours. If testing is not performed within 8 hours, sera may be stored between 2 - 8°C, for no longer than 48 hours. If a delay in testing is anticipated, store test sera at −20°C or lower. Avoid multiple freeze/thaw cycles which may cause loss of antibody activity and give erroneous results. It is the responsibility of the individual laboratory to use all available references and/or its own studies to determine stability criteria for its laboratory (27).

ASSAY PROCEDURE

1. Remove the individual components from storage and allow them to warm to room temperature (20 - 25°C).
2. Determine the number of microwells needed. Allow for six Control/Calibrator determinations (one Reagent Blank, one Negative Control, three Calibrators and one Positive Control) per run. Run a Reagent Blank on each assay. Check software and reader requirements for the correct Controls/Calibrator configurations. Return unused strips to the resealable pouch with desiccant, seal, and return to storage between 2 - 8°C.

EXAMPLE PLATE SET-UP

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blank</td>
<td>Patient 3</td>
</tr>
<tr>
<td>B</td>
<td>Negative Control</td>
<td>Patient 4</td>
</tr>
<tr>
<td>C</td>
<td>Calibrator</td>
<td>Etc.</td>
</tr>
<tr>
<td>D</td>
<td>Calibrator</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Calibrator</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Positive Control</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Patient 1</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Patient 2</td>
<td></td>
</tr>
</tbody>
</table>

3. Prepare a 1:21 dilution (e.g.: 10µL of serum + 200µL of SAVe Diluent®) of the Negative Control, Calibrator, Positive Control, and each patient serum. **NOTE: The SAVe Diluent® will undergo a color change confirming that the specimen has been combined with the diluent.**
4. To individual wells, add 100µL of each diluted Control, Calibrator and patient specimen. Ensure that the samples are properly mixed. Use a different pipette tip for each sample.
5. Add 100µL of SAVe Diluent® to well A1 as a Reagent Blank. Check software and reader requirements for the correct Reagent Blank well configuration.
6. Incubate the plate at room temperature (20 - 25°C) for 25 ± 5 minutes.
7. Wash the microwell strips 5 times.
 a. **Manual Wash Procedure:**
 1. Vigorously shake out the liquid from the wells.
 2. Fill each microwell with Wash Buffer. Make sure no air bubbles are trapped in the wells.
 3. Repeat steps 1. and 2. for a total of 5 washes.
 4. Shake out the wash solution from all the wells. Invert the plate over a paper towel and tap firmly to remove any residual wash solution from the wells. Visually inspect the plate to ensure that no residual wash solution remains. Collect wash solution in a disposable basin and treat with disinfectant at the end of the day’s run.
 b. **Automated Wash Procedure:**
 If using an automated microwell wash system, set the dispensing volume to 300 - 350µL/well. Set the wash cycle for 5 washes with no delay between washes. If necessary, the microwell plate may be removed from the washer, inverted over a paper towel and tapped firmly to remove any residual wash solution from the microwells.
8. Add 100µL of the Conjugate to each well, including the Reagent Blank well, at the same rate and in same order as the specimens.
9. Incubate the plate at room temperature (20 - 25°C) for 25 ± 5 minutes.
10. Wash the microwells by following the procedure as described in step 7.
11. Add 100µL of TMB to each well, including the Reagent Blank well, at the same rate and in the same order as the specimens.
12. Incubate the plate at room temperature (20 - 25°C) for 10 - 15 minutes.
13. Stop the reaction by adding 50µL of Stop Solution to each well, including the Reagent Blank well, at the same rate and in the same order as the TMB. Positive samples will turn from blue to yellow. After adding the Stop Solution, tap the plate several times to ensure that the samples are thoroughly mixed.
14. Set the microwell reader to read at a wavelength of 450nm and measure the optical density (OD) of each well against the Reagent Blank. Read the plate within 30 minutes of the addition of the Stop Solution.

ABBREVIATED TEST PROCEDURE

1. Dilute Serum 1:21.
2. Add diluted sample to microwell - 100µL/well.
3. **Incubate 25 ± 5 minutes.**
4. Wash.
5. Add Conjugate - 100µL/well.
6. **Incubate 25 ± 5 minutes.**
7. Wash.
8. Add TMB - 100µL/well.
9. **Incubate 10 - 15 minutes.**
10. Add Stop Solution - 50µL/well - Mix.
11. READ within 30 minutes.
QUALITY CONTROL

1. Each time the assay is performed, the Calibrator must be run in triplicate. A Reagent Blank, Negative Control, and Positive Control must also be included.
2. Calculate the mean of the three Calibrator wells. If any of the three values differ by more than 15% from the mean, discard that value and calculate the mean using the remaining two wells.
3. The mean OD value for the Calibrator, Positive Control, and Negative Control should fall within the following ranges:

<table>
<thead>
<tr>
<th>OD Range</th>
<th>Negative Control</th>
<th>Calibrator</th>
<th>Positive Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤0.250</td>
<td></td>
<td>≥0.300</td>
<td>≥0.500</td>
</tr>
</tbody>
</table>

 a. The OD of the Negative Control divided by the mean OD of the Calibrator should be ≤0.9.
 b. The OD of the Positive Control divided by the mean OD of the Calibrator should be ≥1.25.
 c. If the above conditions are not met the test should be considered invalid and should be repeated.
4. The Positive Control and Negative Control are intended to monitor for substantial reagent failure, but will not ensure precision at the assay Cutoff.
5. Additional Controls may be tested according to guidelines or requirements of local, state, and/or federal regulations or accrediting organizations.

INTERPRETATION OF RESULTS

1. Calculations:
 a. Correction Factor: The manufacturer determined a Cutoff OD Value for positive samples and correlated it to the Calibrator. The Correction Factor (CF) allows for the determination of the Cutoff Value for positive samples. It will also correct for slight day-to-day variations in test results. The Correction Factor is determined for each lot of components and is printed on the Component Label located in the Test System box.
 b. Cutoff OD Value: To obtain the Cutoff OD Value, multiply the CF by the mean OD of the Calibrator determined above.

 \[(C x \text{Mean OD of Calibrator} = \text{Cutoff OD Value})\]

 c. Index Values/OD Ratios: Calculate the Index Value/OD Ratio for each specimen by dividing its OD Value by the Cutoff OD from step b.

 Example:

<table>
<thead>
<tr>
<th>Mean OD of Calibrator</th>
<th>Correction Factor (CF)</th>
<th>Cutoff OD</th>
<th>Unknown Specimen OD</th>
<th>Specimen Index Value/OD Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.793</td>
<td>0.25</td>
<td>0.793 x 0.25 = 0.198</td>
<td>0.432</td>
<td>0.432/0.198 = 2.18</td>
</tr>
</tbody>
</table>

 2. Interpretations: Index Values/OD Ratios are interpreted as follows.

<table>
<thead>
<tr>
<th>Index Value/OD Ratio</th>
<th>Negative Specimens</th>
<th>Equivocal Specimens</th>
<th>Positive Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤0.90</td>
<td></td>
<td>0.91 to 1.09</td>
<td>≥1.10</td>
</tr>
</tbody>
</table>

 a. An OD ratio ≤0.90 indicates no significant amount of IgG antibodies to CMV detected. A negative result indicates no current or previous infection with CMV. Presume that such individuals are susceptible to primary infection. However, specimens taken too early during a primary infection may not have detectable levels of IgG antibody. When health care professionals suspect a primary infection, take another specimen in eight to 14 days, and test concurrently in the same assay, with the original specimen, to look for seroconversion.
 b. An OD ratio ≥1.10 indicates that IgG antibodies specific to CMV were detected. A positive value indicates a current or previous infection with CMV. Presume that such individuals are at risk of transmitting CMV infection but are not necessarily currently contagious.
 c. Specimens with OD ratio values in the equivocal range (0.91 - 1.09) should be retested in duplicate. Report any two of the three results which agree.
 d. When testing to evaluate paired (acute and convalescent) sera, place both samples in the same assay. If the acute specimen is negative and the convalescent specimen is positive, seroconversion has taken place and that indicates a primary CMV infection.

LIMITATIONS OF THE ASSAY

1. The presence of IgG antibodies to CMV does not necessarily assure protection from future infection with CMV.
2. The antibody titer of a single serum specimen cannot be used to determine recent infection. Collect and test paired samples (acute and convalescent) concurrently to demonstrate seroconversion.
3. Interpret test results for demonstration of seroconversion in conjunction with the clinical evaluation and the results of other diagnostic procedures.
4. Specimens containing antibodies to nuclear antigens (like those found in patients with systemic lupus erythematosus) may give false positive results in the ZEUS ELISA CMV IgG Test System.
5. Samples collected too early in the course of an infection may not have detectable levels of IgG. In such cases, collect a second sample after two to seven weeks and test concurrently with the original specimen to look for seroconversion.
6. Interpret a positive CMV IgG test in neonates with caution since passively acquired maternal antibody can persist for up to six months (25). A negative test for IgG antibody in the neonate may help exclude congenital infection (15). The most definitive diagnosis of active CMV infection requires viral isolation.
7. The results of this test are qualitative, considered them as either positive or negative for the presence of CMV IgG antibodies.

EXPECTED RESULTS

The incidence of CMV infection varies with age, geographic location, and socioeconomic status (2). In the United States, 10 - 30% of children are seropositive for CMV by the age of ten years (2). By age 35, about 50% of the population is seropositive. Studies have reported that the seropositive rate among homosexual men to be greater than 90% (15, 17).

PERFORMANCE CHARACTERISTICS

1. Comparative Study
 A comparative study was conducted to compare the ZEUS ELISA CMV IgG Test System to a commercially available ELISA procedure. A total of 96 specimens from normal blood donors in the Northeastern United States were assayed by the two methods. Below is a summary of these results:

<table>
<thead>
<tr>
<th>Reference ELISA CMV IgG</th>
<th>Positive</th>
<th>Negative</th>
<th>Equivocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEUS ELISA CMV IgG Test System</td>
<td>54</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

 When compared to the other CMV IgG ELISA procedure, the ZEUS ELISA CMV IgG Test System showed a sensitivity of 96.4% (54/56), a specificity of 93.9% (31/33), and an overall agreement of 95.3% (85/89).
2. Reproducibility
Technicians tested four specimens to determine intra-assay and inter-assay variation: two strong positive specimens, a specimen near the cutoff zone, and a low negative specimen. On each of three days, a technician tested each specimen once a day, eight times each, resulting in 24 test points. A responsible party then calculated the mean OD ratio and coefficient of variation from the resulting data. A summary of the results of the experiment is below.

<table>
<thead>
<tr>
<th></th>
<th>Intra-Assay (n=8)</th>
<th>Inter-Assay (n=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run 1</td>
<td>Run 2</td>
</tr>
<tr>
<td>Serum 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Ratio</td>
<td>4.62</td>
<td>2.53</td>
</tr>
<tr>
<td>% CV</td>
<td>8.9</td>
<td>4.8</td>
</tr>
<tr>
<td>Serum 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Ratio</td>
<td>3.6</td>
<td>2.46</td>
</tr>
<tr>
<td>% CV</td>
<td>6.8</td>
<td>7.0</td>
</tr>
<tr>
<td>Serum 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Ratio</td>
<td>4.01</td>
<td>2.13</td>
</tr>
<tr>
<td>% CV</td>
<td>6.3</td>
<td>11.8</td>
</tr>
<tr>
<td>Serum 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Ratio</td>
<td>0.23</td>
<td>0.35</td>
</tr>
<tr>
<td>% CV</td>
<td>10.1</td>
<td>16.1</td>
</tr>
</tbody>
</table>

3. Cross Reactivity
A cross reactivity study tested ten serum samples, that were negative in the ZEUS ELISA CMV IgG Test System, using the indirect fluorescent antibody assay for the presence of IgG antibodies specific for Varicella-Zoster (VZ), Epstein-Barr Virus Viral Capsid Antigen (EBV-VCA) and Herpes Simplex Virus type 1 (HSV-1). All ten of the samples tested positive for EBV-VCA and HSV-1 IgG and two of the ten samples were positive for VZ IgG. These results indicate that the ZEUS ELISA CMV IgG Test System does not cross react with antibodies to other herpes viruses.

REFERENCES