

Sistema de pruebas VZV IgG 9Z9331G/SM9Z9331G REF

APLICACIÓN

El sistema de pruebas ELISA Varicella-Zoster Virus (VZV) IgG de ZEUS está diseñado para la detección cualitativa de anticuerpos de tipo IgG contra el VZV en suero humano. Cuando se realiza este prueba siguiendo estas instrucciones, los resultados y otra información clínica pueden ayudar en la determinación del estado inmune, así como en el diagnóstico de infecciones por VZV. Esta prueba está concebida para uso diagnóstico in vitro.

IMPORTANCIA Y ASPECTOS GENERALES

El virus Varicella-Zoster (VZV) es un patógeno común en los humanos. La evolución clínica del VZV en humanos se suele clasificar como varicela y Herpes zoster (culebrilla). El principal avance significativo que permite entender la naturaleza de estos fármacos se debió originalmente a Weller y cols., quienes demostraron el método de propagación seriada del virus (1,2) y, más recientemente, su epidemiología y control (3). Se demostró que los aislamientos de virus obtenidos de pacientes con varicela y zóster eran idénticos según el efecto citopático (1), la antigenicidad (2) y la morfología (4,5). Más recientemente, se ha demostrado que estos virus tienen un peso molecular del ADN (6) y patrones de endonucleasa de restricción (7) idénticos.

Los síntomas clínicos de la varicela primaria incluyen un periodo prodrómico de dolores de cabeza, malestar y fiebre antes de la aparición del exantema o las erupciones características, que pueden ser el primer síntoma. La erupción es pleomorfa y evoluciona de macular a papular, antes de pasar a la fase vesicular, y suele desarrollarse en sucesivas oleadas de nuevas lesiones en un periodo de entre tres y cinco días.

La varicela es endémica en Estados Unidos y suele afectar a los niños en edad de enseñanza primaria (de cinco a ocho años). Los adultos, adolescentes y neonatos son también susceptibles de infección. La enfermedad aparece en ciclos de 2 a 5 años, generalmente en invierno o en primavera, y puede alcanzar niveles de epidemia. Se ha demostrado que las infecciones por varicela durante los primeros meses de embarazo rara vez provocan anomalías congénitas. Las infecciones por varicela en embarazadas en el momento del parto pueden causar infecciones mortales en el neonato, así como infecciones mortales en enfermos con diversas patologías (8-10). No es rara la propagación potencial de una enfermedad nosocomial.

El Herpes zoster (culebrilla) es una enfermedad que aparece principalmente en adultos; en la mayoría de los casos se produce en individuos mayores de 50 años. A diferencia de la naturaleza epidémica y temporal de la infección por varicela, el Herpes zoster muestra un patrón aleatorio. Se cree que el Herpes zoster es la reactivación de un virus de varicela ya existente que ha estado en estado latente desde la infección primaria por varicela. Las personas afectadas por infecciones por Herpes zoster se comportan así incluso en presencia de anticuerpos previamente existentes contra el virus de la varicela. Los síntomas de Herpes zoster son zonas eritematosas y maculopapulares que aparecen en una superficie cutánea inervada por el mismo nervio aferente. Aparecen vesículas, ya sean solas o en grupos, por lo general acompañadas de un dolor que en determinados casos puede ser extremo (11).

Según los datos epidemiológicos de la diseminación del VZV a través de los núcleos de gotículas o gotículas de aire y, posiblemente, por la descamación cutánea, se cree que la puerta de entrada del virus reside en las vías respiratorias (12). Después de la diseminación del VZV desde la sangre, se difunde rápidamente hacia la piel y es detectable en el epitelio, y después afecta a las células de la epidermis con acumulación de líquidos entre la capa de células espinosas y la epidermis externa, formando una vesícula (13). La vesícula se convierte en el centro de una actividad inmunológica intensa con un infiltrado inicial de leucocitos polimorfonucleares que son la célula inflamatoria predominante que se observa en el Herpes zoster (14). Más adelante, las células mononucleadas migran hacia la vesícula.

FUNDAMENTO DE LA PRUEBA

El sistema de pruebas ELISA VZV IgG de ZEUS está diseñado para detectar anticuerpos de tipo IgG contra VZV en suero humano. La creación de los pocillos sensibilizados de las tirillas de micropocillos de plástico se llevó a cabo mediante adsorción pasiva con antígeno de VZV. El procedimiento de la prueba comprende tres pasos de incubación:

- Los sueros de la prueba (debidamente diluidos) se incuban en micropocillos revestidos de antígeno. Los anticuerpos contra antígeno específico que existan en la muestra se fijarán al antígeno inmovilizado. La placa se lava para eliminar el anticuerpo no fijado y otros componentes séricos.
- Se agrega anti-IgG humana de cabra conjugada con peroxidasa a los pocillos y se incuba la placa. El conjugado reaccionará con el anticuerpo de tipo IgG inmovilizado en la fase sólida del paso 1. Se lavan los micropocillos para eliminar el conjugado que no haya reaccionado.
- Los micropocillos que contienen conjugado de peroxidasa inmovilizado se incuban con solución de sustrato de peroxidasa. La hidrólisis del sustrato por la peroxidasa produce un cambio de color. Transcurrido un tiempo, se detiene la reacción y se mide fotométricamente la intensidad del color de la solución. La intensidad del color de la solución depende de la concentración de anticuerpos en la muestra original analizada.

COMPONENTES DEL SISTEMA DE PRUEBAS

Materiales suministrados:

Cada sistema de pruebas contiene los siguientes componentes en cantidad suficiente para realizar el número de pruebas indicado en la etiqueta del envase. NOTA: los siguientes componentes contienen como conservante azida de sodio a una concentración de <0,1% (p/v): controles, calibrador y SAVe Diluent®.

Compone	ente	\	\sum_{96} \sum_{480} Descripción						
PLATE	I PLATE I I 1 I 5 I		5	a: 96 micropocillos distribuidos en doce tirillas de 1x8 micropocillos recubiertos con el antígeno desactivado de VZV (cepa VZ-10). Las as se suministran envasadas en un soporte y selladas en un sobre con desecante.					
CONJ		1	5	Conjugado: anti-IgG humana de cabra conjugada con peroxidasa de rábano (específica de la cadena Fc) en frasco(s) de 15 ml con tapón blanco. Listo para usar.					
CONTROL	+		1 2 Control positivo (suero humano): vial(es) de 0,35 ml con tapón rojo.		Control positivo (suero humano): vial(es) de 0,35 ml con tapón rojo.				
CAL			1 4 Calibrador (suero humano): vial(es) de 0,5 ml con tapón azul.		Calibrador (suero humano): vial(es) de 0,5 ml con tapón azul.				
CONTROL	-		1 2 Control negativo (suero humano): vial(es) de 0,35 ml con tapón verde.		Control negativo (suero humano): vial(es) de 0,35 ml con tapón verde.				
DIL	SPE		Diluyente SAVe Diluent®: frasco(s) de 30 ml con tapón verde con Tween 20, albúmina sérica bovina y solución salina tampona fosfato. Listo para usar. NOTA: El diluyente SAVe Diluent ® cambiará de color cuando se combine con suero.		Diluyente SAVe Diluent®: frasco(s) de 30 ml con tapón verde con Tween 20, albúmina sérica bovina y solución salina tamponada con fosfato. Listo para usar. NOTA: El diluyente SAVe Diluent ® cambiará de color cuando se combine con suero.				
SOLN	тмв	1B 5 TMB: frasco(s) de 15 ml de color ámbar con tapón ámbar que contiene 3,3',5,5'-tetrametilbenzidina (TMB). Listo para usa		TMB: frasco(s) de 15 ml de color ámbar con tapón ámbar que contiene 3,3',5,5'-tetrametilbenzidina (TMB). Listo para usar.					
SOLN	STOP	1 3 Solución para detener la reacción: frasco(s) de 15 ml con tapón rojo con H ₂ SO ₄ 1 M y HCl 0,7 M. Listo para usar.		Solución para detener la reacción: frasco(s) de 15 ml con tapón rojo con H ₂ SO ₄ 1 M y HCl 0,7 M. Listo para usar.					
WASHBUF	10X		1	5	Tampón de lavado concentrado (10X): diluir 1 parte del concentrado + 9 partes de agua desionizada o destilada. Frasco(s) de 100 ml con tapón transparente que contiene solución salina tamponada con fosfato concentrada 10X y Tween 20 (solución azul). NOTA: la solución 1X tendrá un pH de 7,2 ± 0,2 .				

NOTAS:

- 1. Los siguientes componentes no dependen del número de lote del sistema de pruebas y se pueden usar indistintamente con cualquier sistema de pruebas ELISA de ZEUS: TMB, solución para detener la reacción y tampón de lavado. El diluyente SAVe Diluent® se puede usar indistintamente con cualquier sistema de pruebas ELISA de ZEUS utilizando el n.º de producto 005CC.
- 2. El sistema de pruebas también contiene una etiqueta de componentes que contiene información específica de lote dentro de la caja del sistema de pruebas.

PRECAUCIONES

- 1. Para uso diagnóstico in vitro.
- 2. Se deben seguir las precauciones normales que se utilizan para manipular reactivos de laboratorio. En caso de contacto con los ojos, enjuague inmediatamente con abundante agua y busque asistencia médica. Utilice ropa de protección adecuada, guantes y protección para la cara/ojos. No inhale los vapores. Deshágase de los desechos observando todas las normativas locales, regionales y nacionales.
- 3. Los micropocillos de la placa ELISA no contienen microorganismos viables. No obstante, considere las tirillas **material con potencial riesgo biológico** y manipúlelas de manera acorde.
- 4. Los controles son **material con potencial riesgo biológico**. Los materiales a partir de los cuales se obtuvieron estos productos resultaron negativos para el antígeno del VIH-1, el HBsAg y para anticuerpos contra el VHC y el VIH por métodos de prueba homologados. Sin embargo, dado que ningún método de prueba puede ofrecer una garantía total de que no hay agentes infecciosos, estos productos deberán manipularse con un Nivel de bioseguridad 2, tal como se recomienda para cualquier muestra de sangre o suero humano potencialmente infeccioso en el manual de Biosafety in Microbiological and Biomedical Laboratories (Bioseguridad en laboratorios microbiológicos y biomédicos) de los Centros para el Control de Enfermedades / Institutos Nacionales de la Salud: última edición; y en la Norma de la OSHA sobre Patógenos que se transmiten en la sangre (18).
- 5. Para lograr resultados precisos, es esencial cumplir estrictamente los tiempos y temperaturas de incubación especificados. Se debe dejar que todos los reactivos alcancen temperatura ambiente (20-25 °C) antes de comenzar el ensayo. Los reactivos no utilizados deben devolverse a temperatura de refrigeración inmediatamente después de su uso.
- 6. Un lavado inadecuado podría ocasionar resultados de falsos positivos o falsos negativos. Debe reducirse al mínimo la cantidad de solución de lavado residual (p. ej., mediante secado o aspiración) antes de añadir el conjugado o el sustrato. No permita que los pocillos se sequen entre una incubación y la siguiente.
- 7. El diluyente SAVe Diluent®, los controles, y el calibrador contienen azida sódica en una concentración de <0,1% (p/v). Se ha informado que la azida sódica forma azidas de plomo o cobre en las cañerías del laboratorio, lo que puede ocasionar explosiones al golpear con un martillo. Para evitarlo, enjuague bien el lavabo con agua después de eliminar las soluciones que contengan azida de sodio.
- 8. La solución para detener la reacción es TÓXICA por inhalación, por contacto con la piel o en caso de ingestión. Provoca quemaduras. En caso de accidente o si se siente mal, solicite asistencia médica inmediatamente.
- 9. La solución de TMB es NOCIVA. Irritante para los ojos, el sistema respiratorio y la piel.
- 10. La solución concentrada del tampón de lavado es IRRITANTE. Irritante para los ojos, el sistema respiratorio y la piel.
- 11. Limpie el fondo de la placa de todo residuo de líquido o huellas de los dedos que puedan alterar las lecturas de la densidad óptica (DO).
- 12. La dilución o adulteración de estos reactivos puede generar resultados erróneos.
- 13. No utilice reactivos de otro origen o fabricante.
- 14. La solución de TMB debe ser incolora o de color amarillo muy claro, verde muy claro o azul muy claro al utilizarla. La contaminación de TMB con el conjugado u otros oxidantes hará que la solución cambie de color prematuramente. No utilice la solución de TMB si tiene un color azul intenso.
- 15. Nunca pipetee con la boca. Evite el contacto de los reactivos y las muestras de pacientes con la piel y las membranas mucosas.
- 16. Evite la contaminación microbiana de los reactivos. Esto puede ocasionar resultados incorrectos.
- 17. La contaminación cruzada de reactivos y/o muestras podría ocasionar resultados erróneos.
- 18. Los instrumentos de vidrio reutilizables se deben lavar y enjuagar cuidadosamente para eliminar cualquier residuo de detergente.
- 19. Evite las salpicaduras o la formación de aerosoles.
- 20. No exponga los reactivos a la luz intensa durante el almacenamiento o la incubación.
- 21. Permita que las tirillas de micropocillos y su soporte alcancen la temperatura ambiente antes de abrir el sobre protector, a fin de evitar la condensación en los micropocillos.
- 22. Recoja la solución de lavado en un lavabo de eliminación. Trate la solución de desecho con desinfectante (es decir: 10 % de lejía de uso doméstico 0,5 % de hipoclorito de sodio) Evite la exposición de los reactivos a los vapores de la lejía.
- 23. Precaución: neutralice cualquier desecho líquido con pH ácido antes de agregarlo a la solución de lejía.
- 24. No utilice la placa ELISA si la tirilla indicadora del sobre de desecante ha cambiado de azul a rosado.
- 25. No permita que el conjugado entre en contacto con recipientes o instrumentos que hayan podido contener previamente una solución que utilice azida de sodio como conservante. Los residuos de azida de sodio pueden destruir la actividad enzimática del conjugado.
- 26. No exponga ninguno de los reactivos a soluciones que contengan lejía o a ningún olor fuerte de soluciones que contengan lejía. Los restos de lejía (hipoclorito de sodio), incluso a nivel de trazas, pueden destruir la actividad biológica de muchos de los reactivos incluidos en este sistema de pruebas.

MATERIALES NECESARIOS PERO NO SUMINISTRADOS

- Lector de micropocillos ELISA capaz de leer a una longitud de onda de 450 nm. NOTA: Se podrá usar un lector de longitud de onda única (450 nm) o doble (450/620 - 650 nm). Es preferible la longitud de onda doble, puesto que el filtro de referencia adicional está configurado para disminuir posibles interferencias derivadas de anomalías capaces de absorber luz.
- 2. Pipetas capaces de dispensar con exactitud entre 10 y 200 μ l.
- 3. Pipeta multicanal capaz de dispensar con exactitud entre 50 y 200 μl.
- 4. Depósitos de reactivos para pipetas multicanal.
- 5. Frasco de lavado o sistema de lavado de micropocillos.
- 6. Agua destilada o desionizada.
- 7. Probeta graduada de un litro.
- 8. Pipetas serológicas.
- 9. Puntas de pipeta desechables.
- 10. Toallas de papel.
- 11. Cronómetro de laboratorio para controlar las etapas de incubación.
- 12. Recipiente para desechos y desinfectante (es decir: 10 % de lejía de uso doméstico 0,5 % de hipoclorito de sodio)

CONDICIONES DE ALMACENAMIENTO

Tirillas de micropocillos revestidos: vuelva a sellar inmediatamente las tirillas sobrantes con el secante y devuélvalas al lugar adecuado de almacenamiento. Una vez abiertas, las tirillas son estables durante 60 días siempre y cuando las tirillas indicadoras del envase del desecante permanezcan de color azul.

Conjugado: NO CONGELAR.

Sistema de pruebas, calibrador, control positivo, control negativo, TMB y diluyente SAVe Diluent $^{\scriptsize @}$ sin abrir

Solución para detener la reacción: 2 - 25°C

Tampón de lavado (1X): hasta 7 días entre 20 y 25 °C o durante 30 días entre 2 y 8 °C.

Tampón de lavado (10X): 2 - 25°C

RECOGIDA DE LAS MUESTRAS

- 1. ZEUS Scientific recomienda que el usuario realice la recolección de muestras conforme al documento M29 del Instituto de Estándares Clínicos y de Laboratorio (CLSI): Protection of Laboratory Workers from Infectious Disease (Protección de los trabajadores de laboratorio frente a las enfermedades infecciosas).
- Ningún método de prueba puede ofrecer una garantía completa de que las muestras de sangre humana no transmitirán infecciones. Por lo tanto, todos los derivados de la sangre deben considerarse potencialmente infecciosos.
- 3. Con este ensayo solamente deben utilizarse sueros recién extraídos y debidamente refrigerados que se hayan obtenido mediante procedimientos homologados de venopunción aséptica (15, 16). No los utilice si se han agregado anticoagulantes o conservantes. Evite utilizar sueros hemolizados, lipémicos o contaminados con bacterias.
- 4. Almacene la muestra a temperatura ambiente durante un lapso no superior a las 8 horas. Si la prueba no se realiza dentro de las 8 horas, el suero puede almacenarse a entre 2 8° C, durante un lapso no superior a las 48 horas. Si tiene previsto retrasar la realización de la prueba, conserve los sueros de la prueba a -20 °C o a temperaturas inferiores. Evite múltiples ciclos de congelación/descongelación que puedan ocasionar la pérdida de actividad de los anticuerpos y dar lugar a resultados erróneos. Es responsabilidad del laboratorio individual usar todas las referencias disponibles o sus propios estudios para determinar los criterios de estabilidad para su laboratorio (19).

PROCEDIMIENTO DE LA PRUEBA

- 1. Retire los componentes individuales del kit del almacenamiento y permita que alcancen la temperatura ambiente (20 25 °C).
- 2. Determine el número de micropocillos necesarios. Calcule seis determinaciones de control o calibrador (un blanco de reactivo, un control negativo, tres calibradores y un control positivo) por serie. En cada prueba se debe analizar un blanco de reactivo. Compruebe que las configuraciones de controles y calibrador sean correctas en los requisitos del programa y del lector. Devuelva las tirillas no usadas a la bolsa resellable con desecante, séllela y devuélvala a su almacenamiento entre 2 y 8 °C.

	EJEMPLO DE CONFIGURACIÓN DE LA PLACA							
	1	2						
Α	Blanco	Paciente 3						
В	Control negativo	Paciente 4						
С	Calibrador	etc.						
D	Calibrador							
Е	Calibrador							
F	Control positivo							
G	Paciente 1							
Н	Paciente 2							

- 3. Prepare una dilución 1:21 (por ejemplo: 10 μl de suero + 200 μl de diluyente SAVe Diluent®) del control negativo, del calibrador, del control positivo y de cada suero de paciente. NOTA: el diluyente SAVe Diluent® sufrirá un cambio de color, lo cual confirma que la muestra se ha combinado con el diluyente.
- A cada micropocillo se añaden 100 μl de cada control diluido, calibrador y muestra de paciente. Compruebe que las muestras estén bien mezcladas. Utilice una punta de pipeta diferente para cada muestra.
- 5. Añada 100 μl de diluyente SAVe Diluent® al micropocillo A1 como blanco de reactivo. Compruebe que la configuración del micropocillo del blanco de reactivo sea correcta en los requisitos del programa y del lector.
- 6. Incube la placa a temperatura ambiente (20 25 °C) durante 25 ± 5 minutos.
- 7. Lave las tirillas de micropocillos 5 veces.

a. Procedimiento de lavado manual:

- 1. Agite la placa para eliminar el líquido de todos los micropocillos.
- 2. Llene cada micropocillo con solución tampón de lavado. Asegúrese de que no queden burbujas de aire atrapadas en los micropocillos.
- 3. Repita los pasos 1. y 2. para un total de 5 lavados.
- 4. Agite la placa para eliminar la solución de lavado de todos los micropocillos. Invierta la placa sobre una toalla de papel y dele unos golpes secos para eliminar cualquier residuo de solución de lavado de los micropocillos. Inspeccione visualmente la placa para asegurarse de que no queden residuos de la solución de lavado. Recoja la solución de lavado en un recipiente desechable y trátela con desinfectante al final de la jornada de trabajo.

b. Procedimiento de lavado automático:

Si está utilizando un sistema automático de lavado, ajuste el volumen dispensado en 300-350 µl/micropocillo. Ajuste el ciclo de lavado para 5 lavados, sin interrupción entre los mismos. En caso necesario, se puede extraer la placa de micropocillos del lavador, invertirla sobre una toalla de papel y golpearla con firmeza para eliminar cualquier residuo de solución de lavado de los micropocillos.

- 8. Agregue 100 µl de conjugado a cada micropocillo, incluido el micropocillo del blanco de reactivo, a la misma velocidad y en el mismo orden en que se agregaron las muestras.
- 9. Incube la placa a temperatura ambiente (20 25 °C) durante 25 ± 5 minutos.
- 10. Lave los micropocillos siguiendo el procedimiento descrito en el paso 7.
- 11. Agregue 100 μl de TMB a cada micropocillo, incluido el micropocillo del blanco de reactivo, a la misma velocidad y en el mismo orden en que se agregaron las muestras.
- 12. Incube la placa a temperatura ambiente (20 25 °C) entre 10 y 15 minutos.
- 13. Detenga la reacción añadiendo 50 µl de la solución para detener la reacción a cada micropocillo, incluido el micropocillo del blanco de reactivo, a la misma velocidad y en el mismo orden en que se agregó la TMB. Las muestras positivas cambiarán de azul a amarillo. Después de agregar la solución para detener la reacción, dé unos cuantos golpes secos a la placa para asegurarse de que las muestras estén bien mezcladas.
- 14. Ajuste la longitud de onda del lector de micropocillos a 450 nm y mida la densidad óptica (DO) de cada micropocillo con respecto al blanco de reactivo. Lea la placa en los 30 minutos posteriores a la adición de la solución para detener la reacción.

PROCEDIMIENTO DE PRUEBA ABREVIADO

1. Diluya el suero 1:21.

2. Añada la muestra diluida al micropocillo - 100 μl/micropocillo.

3. Incube durante 25 ± 5 minutos.

4. Lave.

5. Añada el conjugado - 100 μ l/micropocillo.

6. Incube durante 25 ± 5 minutos.

7. Lave.

8. Añada la TMB - 100 μl/micropocillo.

Incube durante 10 - 15 minutos.

10. Añada la solución para detener la reacción - 50 μl/micropocillo - Mezcle.

11. LEA en el transcurso de 30 minutos.

CONTROL DE CALIDAD

- El calibrador se debe analizar por triplicado cada vez que se realiza esta prueba. También se deben incluir un blanco de reactivo, el control negativo y el control
 positivo.
- 2. Calcule la media de los micropocillos de los tres calibradores. Si alguno de los tres valores difiere de la media más del 15%, deséchelo y calcule la media de los dos valores restantes.
- 3. El valor medio de la DO del calibrador, del control negativo y del control positivo deben quedar dentro de los intervalos siguientes:

	<u>Intervalo de L</u>
Control negativo	≤ 0,250
Calibrador	≥ 0,300
Control positivo	≥ 0,500

- a. El valor de la DO para el control negativo dividido entre la media de la DO del calibrador debe ser ≤ 0,9.
- b. El valor de la DO para el control positivo dividido entre la media de la DO del calibrador debe ser ≥ 1,25.
- c. Si no se cumplen las condiciones anteriores, la prueba no se debe considerar válida y se debe repetir.
- 4. Los controles negativo y positivo sirven para verificar fallos sustanciales de los reactivos, pero no aseguran la precisión en el límite de referencia de la prueba.
- 5. Es posible analizar controles adicionales siguiendo las directrices o los requisitos de las normativas locales, regionales o nacionales, o de las organizaciones acreditadas.
- 6. Consulte el documento C24 del CLSI: <u>Statistical Quality Control for Quantitative Measurement Procedures (Control de calidad estadístico para procedimientos de determinación cuantitativa)</u> para obtener información sobre las prácticas de control de calidad apropiadas.

INTERPRETACIÓN DE LOS RESULTADOS

1. Cálculos

- a. Factor de corrección: El fabricante ha determinado un valor de DO como límite de referencia para las muestras positivas y lo ha correlacionado con el calibrador. El factor de corrección (FC) permite calcular el límite de referencia de las muestras positivas. Asimismo, permite corregir las pequeñas variaciones cotidianas de los resultados de las pruebas. El factor de corrección se determina para cada lote de componentes del kit y está impreso en la etiqueta de componentes que se encuentra en la caja del sistema de pruebas.
- b. Límite de referencia de la DO: Para obtener el límite de referencia de la DO, multiplique el FC por la media de la DO del calibrador determinado anteriormente.

(FC x media de DO del calibrador = límite de referencia de la DO)

.. Valores índice/cocientes de DO: Calcule el valor índice/cociente de DO de cada muestra dividiendo su valor de DO por el límite de referencia de la DO del paso b.

Ejemplo:DO media del calibrador=0,793Factor de corrección (FC)=0,25

Límite de referencia de la DO = 0,793 x 0,25 = 0,198

DO de muestra desconocida = 0,432

Valor índice/cociente de DO de la muestra = 0,432/0,198 = 2,18

2. Interpretaciones: Los valores índice/cocientes de DO se interpretan como se indica a continuación:

	valor indice/cociente de DO
Muestras negativas	≤0,90
Muestras dudosas	0,91 a 1,09
Muestras positivas	≥1,10

- a. Un cociente de DO ≤ 0,90 indica que no se ha detectado una cantidad significativa de anticuerpos de tipo IgG contra el VZV. Un resultado no reactivo indica que no hay, ni hubo, una infección anterior por VZV. Se presupone que tales pacientes no son inmunes y, por tanto, son susceptibles de sufrir una infección primaria.
- b. Un cociente de DO ≥ 1,10 indica que se han detectado anticuerpos de tipo IgG específicos contra el VZV. Un resultado reactivo de la prueba indica una infección anterior o activa por VZV. Un resultado reactivo indica que el paciente en cuestión debe considerarse inmune a una infección primaria por VZV. Los resultados de este sistema de pruebas son cualitativos. La magnitud del cociente de muestras positivas puede no estar correlacionada con el título de anticuerpos. Si se somete a pruebas una muestra durante un proceso de infección primaria, puede suceder que no se detecten anticuerpos de tipo IgG. Si se sospecha de la existencia de una infección por VZV, será necesario tomar una segunda muestra transcurridos catorce días como mínimo.
- c. Las muestras con cociente de DO en el margen de resultado dudoso (0,91-1,09) deberán volver a analizarse por duplicado. Documente cualesquiera dos de los tres resultados que concuerden. Repita la evaluación de las muestras dudosas utilizando un procedimiento serológico alternativo y/o repita la evaluación extrayendo otra muestra entre una y tres semanas más tarde.

LIMITACIONES DE LA PRUEBA

- No se debe emitir un diagnóstico que se base exclusivamente en los resultados del sistema de pruebas ELISA VZV IgG de ZEUS. Interprete los resultados de la prueba para anti-VZV de forma conjunta con la evaluación clínica y los resultados de otros procedimientos de diagnóstico.
- 2. Interprete con cautela las muestras positivas procedentes de sangre del cordón umbilical o de neonatos.
- 3. Un resultado reactivo en pacientes inmunocomprometidos puede no ser indicativo de una infección anterior por el virus de la varicela. Interprete con cautela los resultados de ensayos procedentes de productos sanguíneos recientes.
- ZEUS Scientific no ha establecido el funcionamiento en individuos vacunados con VZV (cepa OKA).

RESULTADOS ESPERADOS

- 1. Los estudios de población con pruebas de diagnóstico para análisis de anticuerpos indican que la mayoría de las personas han sufrido infecciones por el VZV antes de llegar a los 20 años de edad (17).
- 2. El estudio clínico de este producto incluyó 200 muestras aleatorias que se enviaron a un laboratorio de referencia para serología de VZV. En lo que respecta a esta población, 35 de las 200 muestras (17,5%) resultaron negativas, 161 de 200 (80,5%) fueron positivas, y cuatro de las 200 (2%) ofrecieron resultados dudosos. A continuación se muestra la distribución de frecuencias del estudio descrito.

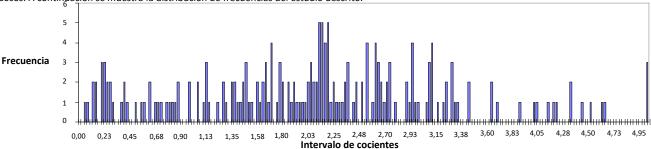


Figura 1: Distribución de frecuencia de 200 muestras serológicas VZV rutinarias

CARACTERÍSTICAS DE FUNCIONAMIENTO

Estudio comparativo:

Se ha realizado un estudio comparativo para demostrar la equivalencia del sistema de pruebas ELISA VZV IgG de ZEUS con otros sistemas de prueba ELISA comerciales en dos laboratorios clínicos. En total, se analizaron 241 muestras: 121 en el laboratorio uno, y 120 en el laboratorio dos. Las muestras sometidas a prueba en el laboratorio uno incluían 100 muestras que se enviaron a un laboratorio de referencia para serología de VZV rutinaria, así como 21 muestras que se habían caracterizado anteriormente como negativas para IgG anti-VZV. Las muestras sometidas a prueba en el laboratorio dos incluían 100 muestras que se enviaron a un laboratorio de referencia para serología de VZV rutinaria, así como 20 muestras que se habían caracterizado anteriormente como negativas para IgG anti-VZV. Los resultados de este estudio comparativo se resumen en las Tablas 1 y 2 siguientes:

Tabla 1: Cálculo de sensibilidad relativa, especificidad y concordancia; laboratorio clínico uno

		Resultados del sistema de pruebas ELISA VZV IgG de ZEUS*					
		Positivo	Negativo	Dudoso	Total		
	Positivo	78	3	3*	84		
Resultados de ELISA	Negativo	2	34	0	36		
comercial	Dudoso	1*	0	0	1		
2.2.2.	Total	81	37	3	121		

Sensibilidad relativa = 78/81 = 96,3%

Intervalo de confianza de 95%** = de 92,2 a 100%

Concordancia relativa = 112/117 = 95,7%

Intervalo de confianza de 95%** = de 92,1 a 99,4%

Especificidad relativa = 34/36 = 94,4%

Intervalo de confianza de 95%** = de 90,0 a 100%

Tabla 2: Cálculo de sensibilidad relativa, especificidad y concordancia; laboratorio clínico dos

		Resultados del sistema de pruebas ELISA VZV IgG de ZEUS					
		Positivo	Negativo	Dudoso	Total		
	Positivo	77	3	2	82		
Resultados de ELISA	Negativo	3	34	0	37		
comercial	Dudoso	0	1***	0	1		
	Total	80	38	2	120		

Sensibilidad relativa = 77/80 = 96,3%

Intervalo de confianza de 95%** = de 92,1 a 100%

Concordancia relativa = 111/117 = 94,9%

Intervalo de confianza de 95%** = de 90,9 a 98,9%

Especificidad relativa = 34/37 = 91,9%

Intervalo de confianza de 95%** = de 83,1 a 100%

Reproducibilidad

La reproducibilidad se evaluó según se describe en el documento número EP5: Evaluation of Precision Performance of Clinical Chemistry Devices - Second Edition (Evaluación de la precisión funcional de los dispositivos químicos clínicos - Segunda edición), según ha publicado el Instituto nacional para homologación de normas de laboratorio (CLSI), Villanova, PA, EE. UU. Se han realizado estudios de reproducibilidad en ambos laboratorios clínicos con las mismas muestras. Se analizaron ocho muestras, dos de las cuales eran relativamente fuertes para positivo, otras dos estaban más próximas a la densidad óptica del límite de referencia (uno positivo débil y otro negativo alto), y otras dos muestras eran negativas, además de los controles negativo y positivo del sistema de pruebas. Durante cada día de las pruebas, cada una de estas ocho muestras se sometió a ensayo por duplicado. Además, durante cada uno de los días de las pruebas, el ensayo se realizó dos veces; una vez por la mañana y otra por la tarde, lo que supone un total de cuatro duplicados diarios para cada muestra. El laboratorio uno llevó a cabo este estudio de reproducibilidad durante un periodo de veinte días, con un total de 80 observaciones para cada uno de los ocho componentes del panel. El laboratorio dos llevó a cabo la investigación durante un total de 10 días, con un total de 40 observaciones para cada una de las muestras. La tabla 3 muestra un resumen del estudio.

Tabla 3. Resumen de pruebas de precisión realizadas en los laboratorios uno y dos

Muestra	Laboratorio	Cociente medio	Resultado	DEA*	DET**	Días	Observaciones totales	% CV global
VG-1	1 2	3,124 4,537	Positivo	0,132 0,242	0,167 0,518	20 10	80 40	5,35 11,43
VG-5	1 2	3,144 4,370	Positivo	0,059 0,176	0,141 0,457	20 10	80 40	4,47 10,46
VG-3	1 2	1,531 2,148	Positivo moderado	0,057 0,164	0,087 0,324	20 10	80 40	5,69 15,06
VG-4	1 2	0,731 0,606	Negativo alto	0,023 0,057	0,040 0,085	20 10	80 40	5,48 14,09
VG-9	1 2	0,152 0,010	Negativo	0,012 0,022	0,022 0,026	20 10	80 40	N/A
VG-10	1 2	0,198 0,067	Negativo	0,014 0,030	0,022 0,061	20 10	80 40	N/A
Control positivo	1 2	3,851 2,114	Positivo	0,188 0,226	0,218 0,312	20 10	80 20	5,65 14,77
Control negativo	1 2	0,197 0,022	Negativo	0,009 0,025	0,025 0,024	20 10	80 40	N/A

^{*}Las muestras ofrecieron resultados dudosos con el sistema de pruebas VZV IgG de ZEUS. Cuando se repitieron las pruebas, los resultados volvieron a ser dudosos. Se encontró que una muestra resultó ser repetidamente dudosa en el ensayo comercial. Estas cuatro muestras se excluyeron de los cálculos. ** Los intervalos de confianza de 95% se calcularon según el método exacto.

^{**} Los intervalos de confianza de 95% se calcularon según el método exacto.

^{***}Dos muestras ofrecieron resultados dudosos en el sistema de pruebas ELISA VZV IgG de ZEUS, y una muestra resultó dudosa en el sistema comercial. Las muestras no se volvieron a analizar por tener un volumen insuficiente. Estas tres muestras se excluyeron de los cálculos.

^{**}Estimación puntual de la desviación estándar de la precisión total.

3. Reactividad cruzada

Se han realizado estudios de reactividad cruzada para evaluar interferencias en el sistema de pruebas VZV IgG ELISA de ZEUS utilizando sueros negativos para anticuerpos contra el VZV y que demostraron tener anticuerpos contra rubeola, CMV, VHS-1, VHS-2, ACV-VEB, ANEB-1, sarampión y paperas. Los resultados de este estudio se resumen en la Tabla 4. Todos los sistemas de pruebas utilizados fueron fabricados por ZEUS Scientific, Inc. para su distribución comercial. Este estudio no detectó reactividad cruzada con los diferentes anticuerpos IgG ni con el sistema de pruebas VZV IgG ELISA de ZEUS.

Tabla 4: Análisis de reactividad cruzada

Muestra	B12	C10	E9	E8	D5	E4	F3	F2
Interpretación del resultado de IgG VZV	0,14 (-)	0,16 (-)	0,58 (-)	0,74 (-)	0,71 (-)	0,52 (-)	0,63 (-)	0,45 (-)
Interpretación del resultado de rubeola	0,81 (-)	0,89 (-)	1,98 (+)	1,30 (+)	3,80 (+)	3,25 (+)	2,21 (+)	1,31 (+)
Interpretación del resultado de CMV	2,40 (+)	3,55 (+)	0,22 (-)	0,24 (-)	0,61 (-)	1,98 (+)	2,73 (+)	0,15 (-)
Interpretación del resultado de VSH-1	1,42 (+)	1,67 (+)	2,07 (+)	1,02 (±)	0,84 (-)	1,77 (+)	1,32 (+)	2,32 (+)
Interpretación del resultado de VHS-2	1,45 (+)	0,63 (-)	1,02 (±)	3,10 (+)	0,71 (-)	1,04 (+)	0,50 (-)	1,07 (±)
Interpretación del resultado de ACV	2,49 (+)	3,84 (+)	2,80 (+)	4,00 (+)	4,27 (+)	3,15 (+)	1,69 (+)	1,22 (+)
Interpretación del resultado de ANEB	4,51 (+)	5,66 (+)	2,46 (+)	6,52 (+)	1,94 (+)	3,28 (+)	5,29 (+)	4,43 (+)
Interpretación del resultado de sarampión	1,55 (+)	1,46 (+)	0,94 (±)	0,88 (-)	1,64 (+)	1,26 (+)	1,42 (+)	1,94 (+)
Interpretación del resultado de paperas	2,65 (+)	3,65 (+)	2,78 (+)	0,90 (-)	2,34 (+)	5,02 (+)	2,77 (+)	4,12 (+)
Nota: en todos los sist	temas de pruel	oas de la tabla an	terior:					

REFERENCIAS

0,91-1,09 es dudoso (±)

<0,90 es negativo (-)

- 1. Weller TH, Witton HM, Bell EJ. Exp. Med. 108:843, 1958
- 2. Weller TH, Coons AH: Proc. Soc. Exp. Biol. Med. 86:789, 1954
- 3. Weller TH: Viral Infections of Human: Epidemiology and Control. 2nd ed. NY: Pelnum 569-95, 1982
- 4. Kimura A, et al: Arch virusforsch 36: 1, 1972
- 5. Esiri M, Tomlinson AH: J. Neurol. Sci. 15:25, 1972
- 6. Oakes JE, Iltis JP Hyman RW, et al: Virology, 82:353, 1977
- 7. Richards JC, Human RW, Rapp F: J. Virol. 32:812, 1979
- 8. Fleisher G, Henry W, McSorley M, Arbeter A, Plotkin S: Am. J. Dis. Child. 135:869-9, 1981.
- 9. Preblud SR: Pediatrics 68:14-7. 1981.

≥1,10 es reactivo (+)

- 10. Ojeda VJ, et al: ASCP 529-532 (Vol 81, No.4), April 1984.
- 11. The Harvard Medical School Health Center, Vol IX. No.8 "Shingles". June, 1984.
- 12. Leclair JM, Zaia JA, Levin MJ: N. Engl. J. Med. 302:450, 1980.
- 13. Tyzzer EE: J. Med. Res. 14:361, 1960.
- 14. Stevens DA, Merigan TC: J. Infect. Dis. 509, 1975.
- 15. Procedures for the Handling and Processing of Blood Specimens. NCCLS Document H18, Current edition. Approved Guideline.
- 16. Procedures for the collection of diagnostic blood specimens by venipuncture: Current edition. Published by National Committee for Clinical Laboratory Standards.
- 17. Scott TF: Epidemiology of Herpetic Infections. Am.J.Opthal. 43:134-147, 1957.
- 18. U.S. Department of Labor (OSHA), Occupational Safety and Health Administration: Occupational Exposure to Bloodborne Pathogens, Final Rule. 21CFR 1910-1030.
- 19. Procedures for the Handling and Processing of Blood Specimens for Common Laboratory Tests; Approved Guidelines 4th Edition (2010). CLSI Document GP44-A4 (ISBN 1-56238-724-3). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, PA 19087.

ZEUS Scientific

200 Evans Way, Branchburg, New Jersey, 08876, USA Toll Free (U.S.): 1-800-286-2111, Opción 2 International: +1 908-526-3744

Fax: +1 908-526-2058

Website: www.zeusscientific.com

ZEUS ELISA y SAVe Diluent[®] son marcas registradas de ZEUS Scientific

Para Asistencia al cliente en EE. UU., comuníquese con su distribuidor local.

Para Asistencia técnica en EE. UU., comuníquese con ZEUS Scientific: llame al número gratuito o escriba un e-mail support@zeusscientific.com.

Para consultas a Asistencia al cliente y Asistencia técnica fuera de EE. UU., comuníquese con su distribuidor local.

 $^{\circ}$ 2017 ZEUS Scientific Todos los derechos reservados.

