

Sistema de análisis de IgG/IgM frente a *B. burgdorferi*

REF

3Z9651/SM3Z9651 3Z9651B

(E

USO PREVISTO

El sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA es un ensayo de inmunoadsorción enzimática (ELISA) para la detección cualitativa de anticuerpos de los tipos IgG e IgM frente a *Borrelia burgdorferi* en el suero humano. Se ha ideado este ensayo diseñado para el análisis de muestras de suero de pacientes con síntomas o sospecha de enfermedad de Lyme.

Si los resultados de los análisis realizados con el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA son positivos para los anticuerpos frente a *Borrelia burgdorferi*, deben hacerse análisis confirmatorios adicionales mediante uno de los siguientes métodos:

(1) Método de análisis confirmatorio estándar (MACE) de IgG o IgM mediante inmunoelectrotransferencia y de acuerdo con las guías actuales,

(2) Método de análisis confirmatorio modificado (MACM) mediante el sistema de análisis de IgG/IgM para VIsE1/pepC10 frente a *Borrelia* ZEUS ELISA. Un análisis con resultado positivo de acuerdo con un MACE o un MACM es indicativo de presencia de anticuerpos y exposición a *Borrelia burgdorferi*, que es la bacteria responsable de la enfermedad de Lyme. Para elaborar un diagnóstico de enfermedad de Lyme, deben verificarse la presencia de anticuerpos frente a *Borrelia burgdorferi*, los antecedentes, los síntomas y otros datos analíticos.

RELEVANCIA Y ANTECEDENTES

Borrelia burgdorferi es la espiroqueta que provoca la enfermedad de Lyme. Las garrapatas del género Ixodes transmiten este microorganismo. En las regiones endémicas, estas garrapatas viven en la vegetación y en algunos animales, como los ciervos, los ratones, los perros, los caballos y los pájaros. La infección por Borerelia burgdorferi comparte ciertos rasgos con otras infecciones por espiroquetas (enfermedades causadas por tres géneros en humanos: Treponema, Borrelia y Leptospira). La piel es el punto de entrada de B. burgdorferi; la picadura de la garrapata suele provocar una erupción cutánea característica, denominada eritema migratorio (EM). El EM aparece en torno a la picadura de la garrapata en el 60 a 80 % de los pacientes. La espiroquetemia se produce con rapidez y se extiende por todos los tejidos y humores corporales.

La enfermedad de Lyme presenta tres etapas, frecuentemente con períodos de latencia intercalados y distintos signos clínicos. La enfermedad de Lyme suele dividirse en tres etapas, en las que se producen síntomas mixtos. Los síntomas varían en función de las zonas afectadas por la infección, como las articulaciones, la piel, el sistema nervioso central, el corazón, los ojos, los huesos, el bazo y los riñones. Las fases tardías de la enfermedad suelen vincularse con la artritis y los síndromes del SNC. La infección puede ser asintomática y no tener transcendencia clínica hasta alcanzadas las etapas más tardías.

Los pacientes generan anticuerpos del tipo IgM durante las semanas inmediatamente posteriores a la aparición del EM y anticuerpos del tipo IgG con mayor lentitud (1). Los anticuerpos del tipo IgG e IgM pueden detectarse durante años.

Se ha conseguido aislar *B. burgdorferi* de biopsias cutáneas, sangre y líquido cefalorraquídeo. No obstante, estos métodos de detección directos por cultivo no siempre resultan útiles para el diagnóstico general de la borreliosis de Lyme. Algunos de los métodos de análisis de anticuerpos frente a B. burgdorferi son el fluoroinmunoanálisis (FIA), la inmunotransferencia y el enzimoinmunoanálisis (EIA).

B. burgdorferi es una bacteria compleja por lo que respecta a los antígenos, con cepas que varían considerablemente. Al principio, los anticuerpos suelen responder a la flagelina, que presenta componentes de reacción cruzada. Es posible que los pacientes que están en las etapas iniciales de la infección no generen niveles detectables de anticuerpos. Por otro lado, el tratamiento antibiótico precoz derivado de la aparición del EM puede disminuir o evitar una buena respuesta. Algunos pacientes no generan nunca cantidades detectables de anticuerpos. Por lo tanto, los análisis serológicos de anticuerpos frente a B. burgdorferi presentan una sensibilidad y una especificidad bajas. Esta falta de precisión hace que los profesionales sanitarios no puedan confiar exclusivamente en estos análisis para determinar el diagnóstico de enfermedad de Lyme (3, 4).

En 1994, en el Segundo Congreso Nacional sobre el Diagnóstico Serológico de la Enfermedad de Lyme se recomendó un sistema analítico de dos niveles dirigido a normalizar los análisis serológicos de *B. burgdorferi*. Dado que el ELISA y el FIA no son lo suficientemente específicos como para respaldar el diagnóstico clínico, se recomendó realizar análisis adicionales de las muestras positivas o dudosas procedentes de ELISA y FIA (primera etapa), utilizando análisis basados en inmunoelectrotransferencia (segunda etapa) para la detección de anticuerpos frente a *B. burgdorferi*. Los análisis por inmunoelectrotransferencia sobre *B. burgdorferi* son complementarios más que confirmatorios, pues su especificidad no es óptima, en particular para la detección de IgM. Si el resultado del análisis confirmatorio en dos etapas es positivo, se considera que existen signos de exposición a *B. burgdorferi*. Este resultado podría respaldar el diagnóstico clínico de enfermedad de Lyme, pero los científicos prefieren evitar su uso como criterio único de diagnóstico. A ese supuesto se le suele denominar "método de análisis confirmatorio estándar" (MACE). En ciertos estudios recientes (18, 19, 20) se ha demostrado que el uso de un segundo ensayo ELISA en lugar de la inmunotransferencia de *Borrelia* puede dar lugar a un método de análisis confirmatorio modificado (MACM), comparable con el MACE.

PRINCIPIO DEL ENSAYO

Se ha ideado el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA para detectar anticuerpos del tipo IgM e IgG frente a *Borrelia burgdorferi* en el suero humano. Se deben preparar los pocillos sensibilizados de las tiras de micropocillos de plástico mediante adsorción pasiva con un antígeno celular completo de *Borrelia burgdorferi*. El procedimiento analítico se divide en tres etapas de incubación:

- 1. Se incuba el suero para análisis (bien diluido) en micropocillos recubiertos del antígeno. Todos los anticuerpos relacionados con el antígeno de la muestra se fijarán al antígeno inmovilizado. Debe lavarse la placa para eliminar los anticuerpos no fijados y otros componentes del suero.
- 2. Debe añadirse a los pocillos un anticuerpo de cabra frente a IgM/IgG humana, conjugado con peroxidasa, y se incuba la placa. El conjugado reaccionará con los anticuerpos del tipo IgM o IgG inmovilizados durante la fase sólida, en la 1ª etapa. Deben lavarse los pocillos para eliminar el conjugado que no haya reaccionado.
- 3. Los micropocillos que contengan conjugado de peroxidasa inmovilizado deben incubarse con una solución de sustrato de peroxidasa. La hidrólisis del sustrato mediante la peroxidasa da lugar a un cambio de color. Transcurrido cierto tiempo, se detiene la reacción y se determina la intensidad del color de la solución por fotometría. La intensidad del color de la solución depende de la concentración de anticuerpos en la muestra para análisis.

COMPONENTES DEL SISTEMA DE ANÁLISIS

Materiales proporcionados:

Cada sistema de análisis contiene una cantidad suficiente de los siguientes componentes para efectuar la cantidad de análisis indicada en la etiqueta del envase. NOTA: Los siguientes componentes contienen azida sódica como conservante en una concentración < 0,1 % (m/v): controles, calibrador y diluyente de la muestra.

Componente	96 480		Descripción
PLATE			Placa: 96 pocillos dispuestos en doce tiras de 1×8 pocillos, recubiertos del antígeno de <i>B. burgdorferi</i> (cepa B31) inactivado. Las tiras se envían en un soporte para tiras dentro de un sobre con secante.
CONJ	1 1 1 5 1 .		Conjugado: anticuerpo de cabra frente a IgG/IgM humana, conjugado (peroxidasa de rábano), en un frasco de 15 ml con el tapón blanco. Listo para usar.

 Σ

CONTROL +		1		2	Control positivo (suero humano): frasco de 0,35 ml con el tapón rojo.
CAL		CAL 1 4 Calibrador (suero humano): frasco de 0,5 ml con el tapón azul.		4	Calibrador (suero humano): frasco de 0,5 ml con el tapón azul.
CONTROL – 1 2 Control negativo (suero humano): frasco de 0,35 ml con el tapón verde.		2	Control negativo (suero humano): frasco de 0,35 ml con el tapón verde.		
DIL SPE 1 4 Diluyente de la muestra: frasco de 30 ml con el tapón verde, que contiene Tw amortiguada con fosfato. Solución de color verde. Listo para usar.		4	Diluyente de la muestra: frasco de 30 ml con el tapón verde, que contiene Tween 20, albúmina de suero bovino y solución salina amortiguada con fosfato. Solución de color verde. Listo para usar.		
SOLN TMB		1		5	TMB: frasco de color topacio de 15 ml con el tapón de color topacio, que contiene 3,3',5,5'-tetrametilbenzidina (TMB). Listo para usar.
SOLN	STOP	1		3	Solución de detención: frasco de 15 ml con el tapón rojo que contiene H ₂ SO ₄ 1 M y HCl 0,7 M. Listo para usar.
WASHBUF	10X	1		5	Solución amortiguadora de lavado (10X): diluya 1 parte de la solución + 9 partes de agua desionizada o destilada. Frasco de 100 ml con tapón transparente que contiene una solución salina amortiguada con fosfato en una concentración de 10X y una solución Tween 20 (solución de color azul). NOTA: El pH de la solución 1X será de 7,2 ± 0,2.

NOTAS:

- 1. Los siguientes componentes son independientes del número de lote del sistema de análisis y pueden intercambiarse con los del sistema de análisis ZEUS ELISA: TMB, solución de detención y solución amortiguadora de lavado.
- 2. El sistema de análisis está equipado con una etiqueta que contiene información específica sobre el lote; esta se encuentra dentro de la caja del sistema de análisis.

PRECAUCIONES

- 1. Para uso diagnóstico in vitro.
- Siga las precauciones normales empleadas al manipular reactivos de laboratorio. En caso de contacto con los ojos, enjuague inmediatamente con agua abundante y busque atención médica. Lleve ropa protectora adecuada, guantes y protección ocular o para la cara. No respire los vapores. Elimine los desechos de acuerdo con la legislación local, estatal y federal aplicable.
- 3. Los pocillos de la placa para ELISA no contienen microorganismos viables. No obstante, debe considerarse que las tiras son materiales con posible riesgo biológico, por lo que deben manipularse como tales.
- 4. Los controles son materiales con posible riesgo biológico. Los materiales de los que se derivan estos productos dieron un resultado negativo para el antígeno del VIH-1, HBsAg y para los anticuerpos frente al VHC y al VIH mediante métodos de análisis aprobados. No obstante, puesto que ningún método de análisis puede ofrecer una garantía total de ausencia de agentes infecciosos, estos productos deben manipularse de acuerdo con un nivel de bioseguridad 2, según lo recomendado para cualquier muestra de suero o sangre de origen humano potencialmente infecciosa en el manual "Biosafety in Microbiological and Biomedical Laboratories", de los Centros para el Control de las Enfermedades y los Institutos Nacionales de Salud (edición actual), y la norma de la OSHA para patógenos transmitidos por la sangre (16).
- 5. Para obtener resultados precisos, es esencial que se ajuste a las condiciones de tiempo y temperatura de incubación especificadas. Se debe dejar que todos los reactivos se estabilicen a temperatura ambiente (20 25 °C) antes de iniciar el análisis. Devuelva los reactivos sin usar a un lugar con la temperatura de refrigeración inmediatamente después de usarlos.
- 6. Un lavado inadecuado puede dar lugar a resultados falsos positivos o falsos negativos. Asegúrese de reducir al mínimo la cantidad residual de la solución de lavado (p. ej., mediante secado o aspirado) antes de añadir el conjugado o sustrato. No deje que los pocillos se sequen entre incubaciones.
- 7. El diluyente de la muestra, los controles y el calibrador contienen azida sódica en una concentración < 0,1 % (m/v). Se ha indicado que la azida sódica genera azida de plomo o cobre en las tuberías del laboratorio, que podrían explotar al golpearlas con un martillo. Para evitar este riesgo, aclare bien el lavabo con agua tras eliminar la solución que contenga azida sódica.
- 8. La solución de detención resulta TÓXICA si se inhala, se traga o entra en contacto con la piel. Además, puede provocar quemaduras. Si tuviera un accidente o se sintiera indispuesto, busque atención médica de inmediato.
- 9. La solución de TMB es NOCIVA. Resulta irritante para los ojos, el aparato respiratorio y la piel.
- 10. La solución amortiguadora de lavado es IRRITANTE. Resulta irritante para los ojos, el aparato respiratorio y la piel.
- 11. Limpie el fondo de la placa, de modo que quede exenta de líquidos residuales y huellas, ya que estos pueden alterar la lectura de la densidad óptica (DO).
- 12. La dilución o adulteración de estos reactivos puede generar resultados erróneos.
- 13. No utilice reactivos procedentes de otras fuentes o fabricantes.
- 14. Durante su uso, la solución de TMB debe ser incolora o presentar un tono amarillo, verde o azul muy claros. Si el TMB se contamina con el conjugado u otros oxidantes, la solución cambiará de color de forma prematura. No utilice el TMB si presenta un color azul evidente.
- 15. No pipetee nunca con la boca. Evite el contacto de los reactivos y de las muestras de los pacientes con la piel y las mucosas.
- 16. Evite la contaminación microbiana de los reactivos. Se pueden obtener resultados incorrectos.
- 17. La contaminación cruzada de los reactivos y/o de las muestras podría provocar resultados erróneos.
- 18. Los utensilios de vidrio reutilizables se deben lavar bien sin usar detergentes.
- 19. Evite las salpicaduras o la generación de aerosoles.
- 20. No exponga los reactivos a una luz potente durante su conservación o incubación.
- 21. Deje que el soporte y las tiras de micropocillos alcancen la temperatura ambiente antes de abrirlos. La cubierta de protección evitará la condensación en los pocillos.
- 22. Recoja la solución de lavado en un recipiente de desecho. Trate la solución residual con desinfectante (es decir, lejía de uso doméstico al 10 % o hipoclorito sódico al 0,5 %). Evite la exposición de los reactivos a los vapores de la lejía.
- 23. Atención: Neutralice cualquier solución residual con un pH ácido antes de añadirla a la solución de lejía.
- 24. No utilice la placa para ELISA si la tira indicadora de la bolsa de secante ha pasado de ser de color azul a ser de color rosa.
- 25. No deje que el conjugado entre en contacto con recipientes o instrumentos que puedan haber contenido previamente una solución que utilice la azida sódica como conservante. Las cantidades residuales de azida sódica pueden destruir la actividad enzimática del conjugado.
- 26. No exponga ninguno de los reactivos a soluciones que contengan lejía ni a ningún olor fuerte procedente de soluciones que contengan lejía. Cualquier resto de lejía (hipoclorito sódico) puede destruir la actividad biológica de muchos de los reactivos del sistema de análisis.

MATERIALES NECESARIOS PERO NO SUMINISTRADOS

- Evaluador de micropocillos para ELISA, capaz de evaluar de acuerdo con una longitud de onda de 450 nm. NOTA: Puede usarse un evaluador de longitud de onda única (450 nm) o doble (450/620 - 650 nm). Es preferible una longitud de onda doble, puesto que el filtro de referencia adicional está configurado para disminuir posibles interferencias derivadas de anomalías capaces de absorber luz.
- 2. Pipetas de precisión con una capacidad de 10 200 μl.
- 3. Pipetas multicanal de precisión con una capacidad de 50 200 μl.
- 4. Depósitos de reactivos para pipetas multicanal.
- 5. Piseta o sistema de lavado de micropocillos.
- 6. Agua destilada o desionizada.
- 7. Probeta graduada de 1 litro.
- 8. Pipetas serológicas.

- 9. Puntas de pipeta desechables.
- 10. Papel absorbente.
- 11. Temporizador de laboratorio para controlar la incubación.
- 12. Recipiente de desechos y desinfectante (es decir: lejía doméstica al 10 % o hipoclorito sódico al 0,5 %).

CONDICIONES DE CONSERVACIÓN

		Tiras de micropocillos recubiertos: Vuelva a sellar las tiras adicionales con secante y almacénelas correctamente. Una vez abiertas, las tiras
∬-8°C		se mantienen estables durante 60 días y pueden usarse siempre que la tira indicadora de la bolsa de secante sea de color azul.
	2°C -	Conjugado: NO CONGELAR.
	20 •	Sistema de análisis, calibrador, control positivo, control negativo, TMB y diluyente de la muestra sin abrir.
	[∕-25°C	Solución de detención: 2 - 25 °C.
		Solución amortiguadora de lavado (1X): 20 - 25 °C durante siete días y 2 - 8 °C durante 30 días.
	2°C-4	Solución amortiguadora de lavado (10X): 2 - 25 °C.

RECOGIDA DE MUESTRAS

- 1. ZEUS Scientific recomienda que el usuario recoja las muestras de acuerdo con el documento M29 de la CLSI, <u>Protection of Laboratory Workers from Infectious Disease</u> (edición actual).
- 2. Ningún método de análisis conocido ofrece una garantía total de que las muestras de sangre humana no transmitan infecciones. Por tanto, considere que todos los hemoderivados son potencialmente infecciosos.
- 3. En este análisis, utilice solamente suero recién extraído y refrigerado de forma adecuada, obtenido mediante procedimientos de venopunción aprobados (14, 15). No lo utilice si contiene anticoagulantes o conservantes añadidos. Evite el uso de sueros hemolizados, lipémicos o bacteriológicamente contaminados.
- 4. Almacene la muestra a temperatura ambiente durante un máximo de 8 horas. Si el análisis no se realiza en un plazo de 8 horas, el suero puede conservarse a entre 2-8 °C, durante un máximo de 48 horas. Si se espera un retraso en la realización del ensayo, conserve el suero a analizar a –20 °C o a una temperatura inferior. Evite múltiples ciclos de congelación/descongelación, que podrían provocar la pérdida de actividad de los anticuerpos y arrojar resultados erróneos. Es responsabilidad de cada laboratorio utilizar todas las referencias disponibles o sus propios estudios para determinar los criterios de estabilidad para dicho laboratorio (17).

PROCEDIMIENTO DEL ENSAYO

- 1. Extraiga los componentes del lugar de conservación y deje que se estabilicen a temperatura ambiente (20 25 °C).
- 2. Determine la cantidad de micropocillos necesarios. Reserve seis espacios para control/calibrado (un blanco de reactivos, un control negativo, tres calibradores y un control positivo) por desarrollo. Introduzca un blanco de reactivos en cada análisis. Revise los requisitos del software y el evaluador para conocer la configuración correcta de los controles/calibradores. Guarde las tiras que no haya utilizado en la bolsa de cierre hermético que contiene el secante, ciérrela y almacénela a una temperatura entre 2 y 8 °C.

	EJEMPLO DE CONFIGURACIÓN DE LA PLACA								
	1	2							
Α	Blanco	Paciente 3							
В	Control negativo	Paciente 4							
С	Calibrador	Etc.							
D	Calibrador								
E	Calibrador								
F	Control positivo								
G	Paciente 1								
Н	Paciente 2								

- 3. Prepare una dilución 1:21 (p. ej., 10 µl de suero + 200 µl del diluyente de la muestra) que contenga el control negativo, el calibrador, el control positivo y el suero de cada paciente. Asegúrese de que las muestras estén bien mezcladas.
- 4. Pipetee 100 µl de cada control, calibrador y muestra del paciente diluidos en cada pocillo. Utilice una punta de pipeta distinta para cada muestra.
- 5. Pipetee 100 µl del diluyente de la muestra en el pocillo A1, a modo de blanco de reactivos. Revise los requisitos del software y el evaluador para conocer la configuración correcta del blanco de reactivos.
- 6. Incube la placa a temperatura ambiente (20 25 °C) durante 30 minutos.
- . Lave las tiras de micropocillos cinco veces.
 - a. Procedimiento de lavado manual:
 - 1. Agite enérgicamente los pocillos hasta que no quede líquido.
 - 2. Llene los micropocillos de la solución amortiguadora de lavado. Asegúrese de que no queden burbujas de aire en los pocillos.
 - 3. Repita los pasos 1 y 2 cinco veces.
 - 4. Extraiga la solución de lavado de todos los pocillos. Dé la vuelta a la placa, colóquela sobre papel absorbente y golpéela suavemente para eliminar cualquier resto de solución de lavado de los pocillos. Revise la placa de forma visual para asegurarse de que no queden restos de la solución de lavado. Vierta toda la solución de lavado en un recipiente de desechos y trátela con desinfectante al final del día.

b. Procedimiento de lavado automático:

Si va a utilizar un sistema de lavado automático de micropocillos, ajuste el volumen de dispensación a 300 - 350 µl/pocillo. Programe cinco ciclos de lavado sin pausa entre lavados. Si es necesario, extraiga la placa de micropocillos de la lavadora, colóquela del revés sobre papel absorbente y golpéela suavemente para extraer cualquier resto de la solución de lavado de los micropocillos.

- 8. Pipetee 100 µl del conjugado en cada pocillo, incluido el pocillo del blanco de reactivos, a la misma velocidad y en el mismo orden que las muestras.
- 9. Incube la placa a temperatura ambiente (20 25 $^{\circ}$ C) durante 30 minutos.
- 10. Lave los micropocillos de acuerdo con el procedimiento que se indica en el apartado 7.
- 11. Pipetee 100 µl del TMB en cada pocillo, incluido el pocillo del blanco de reactivos, a la misma velocidad y en el mismo orden que las muestras.
- 12. Incube la placa a temperatura ambiente (20 25 $^{\circ}$ C) durante 10 15 minutos.
- 13. Detenga la reacción pipeteando 50 µl de la solución de detención en cada pocillo, incluido el pocillo del blanco de reactivos, a la misma velocidad y en el mismo orden que el TMB. Las muestras positivas pasarán de ser de color azul a ser de color amarillo. Tras pipetear la solución de detención, golpee la placa suavemente varias veces para asegurarse de que las muestras se mezclen bien.
- 14. Configure el evaluador de micropocillos para que evalúe de acuerdo con una longitud de ondas de 450 nm y determine la densidad óptica (DO) de cada pocillo frente al blanco de reactivos. Evalúe la placa menos de 30 minutos después de añadir la solución de detención.

RESUMEN DEL PROCEDIMIENTO DEL ENSAYO

- 1. Diluya el suero en 1:21.
- 2. Pipetee la muestra diluida en el micropocillo: 100 μl/pocillo.
- 3. Incube durante 25 ± 5 minutos.
- 4. Lave.
- 5. Pipetee el conjugado: 100 μl/pocillo.
- 6. Incube durante 25 ± 5 minutos.

- 7. Lave.
- 8. Pipetee el TMB: 100 μl/pocillo.
- 9. Incube durante 10 15 minutos.
- 10. Pipetee la solución de detención: 50 μl/pocillo. Mezcle.
- 11. EVALÚE en un plazo de 30 minutos.

CONTROL DE CALIDAD

- 1. Cada vez que se realice un análisis, debe introducirse tres veces el calibrador. También debe incluirse un blanco de reactivos, un control negativo y un control positivo.
- 2. Calcule la media de los tres pocillos del calibrador. Si alguno de los tres valores se desvía más de un 15 % de la media, elimine dicho valor y calcule la media usando los dos pocillos restantes.
- 3. El valor medio de la DO del calibrador, el control positivo y el control negativo debe ajustarse a los siguientes intervalos:

	<u>Intervalo de la DC</u>
Control negativo	≤ 0,250
Calibrador	≥ 0,300
Control positivo	≥ 0,500

- a. La DO del control negativo dividida entre la media de la DO del calibrador debe ser ≤ 0,9.
- b. La DO del control positivo dividida entre la media de la DO del calibrador debe ser ≥ 1,25.
- c. Si no se reúnen las condiciones antedichas, debe considerarse que el análisis no es válido, por lo que debe repetirse.
- 4. El objetivo del control positivo y el control negativo es controlar que no se cometa un error importante con los reactivos. No obstante, estos no garantizan la precisión del valor de corte del análisis.
- 5. Pueden analizarse controles adicionales de acuerdo con las directrices o requisitos de la normativa local, estatal o federal o las organizaciones de acreditación.
- 6. Consulte el documento C24 de la CLSI, Statistical Quality Control for Quantitative Measurement Procedures, para saber más sobre las prácticas óptimas de CC.

INTERPRETACIÓN DE LOS RESULTADOS

1. Cálculos:

- a. Factor de corrección: El fabricante ha determinado un valor de corte de la DO para las muestras positivas y lo ha correlacionado con el calibrador. El factor de corrección (FC) permite determinar el valor de corte para las muestras positivas. Además, corrige la variabilidad cotidiana leve de los resultados de los análisis. Se determina un factor de corrección para cada lote de componentes; este aparece en la etiqueta del componente, que se encuentra en la caja del sistema de análisis.
- b. Valor de corte de la DO: Para obtener el valor de corte de la DO, multiplique el FC por la media de la DO del calibrador, que ya debe haber determinado. (FC × media de la DO del calibrador = valor de corte de la DO)
- c. Cociente valor índice/DO: Calcule el cociente valor índice/DO de cada muestra dividiendo el valor de la DO entre el valor de corte de la DO, determinado en el apartado b.

Ejemplo: Media de la DO del calibrador = 0,793 Factor de corrección (FC) = 0,25

Valor de corte de la DO = $0,793 \times 0,25 = 0,198$

DO de muestra desconocida = 0.432

Cociente valor índice/DO de = 0.432 /0,198 = 2,18

la muestra

2. Interpretación: Los cocientes valor índice/DO se interpretan del siguiente modo.

	Cociente valor índice/DO
Muestras negativas	≤ 0,90
Muestras dudosas	0,91 - 1,09
Muestras positivas	≥ 1,10

- a. Un cociente de DO ≤ 0,90 indica que no se han detectado cantidades significativas de anticuerpos del tipo IgG o IgM frente a *B. burgdorferi*. Si hay motivos para sospechar de infección inicial, debe analizarse una nueva muestra de cuatro a seis semanas después (5).
- b. Un cociente de DO ≥ 1,10 es presuntamente positivo para anticuerpos de IgG/M frente a *B. burgdorferi*. De acuerdo con las recomendaciones actuales, este resultado no puede seguir interpretándose sin un análisis por inmunoelectrotransferencia. Los análisis por inmunoelectrotransferencia sobre *B. burgdorferi* son complementarios más que confirmatorios, pues su especificidad no es óptima, en particular para la detección de IgM. No notifique los resultados hasta que se hayan completado los análisis complementarios.
- 3. Uso e interpretación de MACM (2-EIA) para la detección de anticuerpos del tipo IgG/IgM:

Además de usarse para los inmunoanálisis iniciales en el método de análisis confirmatorio estándar (MACE), este dispositivo puede usarse para los análisis confirmatorios del protocolo 2-EIA o el método de análisis confirmatorio modificado (MACM) del siguiente modo.

- a. Las muestras deben analizarse, en primer lugar, con el sistema de análisis de IgG/IgM para VIsE1/pepC10 frente a Borrelia ZEUS ELISA.
- b. A continuación, deben analizarse todas las muestras positivas y dudosas con el sistema de análisis de IgG/IgM frente a Borrelia burqdorferi ZEUS ELISA.
- c. Los resultados positivos y dudosos de los análisis confirmatorios mediante EIA deben considerarse positivos e interpretarse como análisis complementario de la presencia de anticuerpos del tipo IgG/IgM y de exposición a *B. burgdorferi*.

LIMITACIONES DEL ENSAYO

- 1. Para realizar el estudio mediante MACM, se utilizó el sistema de análisis de IgG/IgM para VIsE1/pepC10 frente a *Borrelia* ZEUS ELISA como análisis inicial y el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* como análisis confirmatorio; los análisis se realizaron en dicho orden. No se ha establecido la eficacia diagnóstica del dispositivo en caso de modificación del orden del análisis o de uso de otros análisis mediante EIA en el MACM (2-EIA).
- 2. Es posible que el suero procedente de pacientes con otras enfermedades por espiroquetas (sífilis, pian, pinta, leptospirosis y borreliosis), mononucleosis infecciosa o lupus eritematoso diseminado arroje resultados falsos positivos (6). Si se observaran reacciones por falsos positivos, deberán llevarse a cabo análisis clínicos epidemiológicos adicionales, a fin de determinar el diagnóstico correcto. Para distinguir los sueros falsos positivos, procedentes de pacientes con sífilis, de los sueros de pacientes con B. burgdorferi, los técnicos de laboratorio realizan análisis de la RPR y de anticuerpos frente a treponemas en dichas muestras (7).
- Si las muestras de suero se extraen demasiado pronto tras la aparición de la enfermedad, antes de que los valores de los anticuerpos alcancen niveles significativos, pueden obtenerse resultados falsos positivos (8). También es posible que el tratamiento antibiótico precoz elimine la respuesta de los anticuerpos frente a las espiroquetas (9).
- 4. Todos estos datos deben interpretarse junto con los síntomas clínicos de la enfermedad, los datos epidemiológicos, la exposición en zonas endémicas y los resultados de otras analíticas.
- 5. No haga exámenes colectivos de la población general. El valor diagnóstico de un resultado positivo depende de la probabilidad de infección previa al análisis. Haga los análisis solo si se observan síntomas clínicos o si es posible que haya habido cierta exposición.
- 6. ZEUS Scientific no ha establecido la eficacia diagnóstica del sistema de análisis de IgG/IgM frente a *B. burgdorferi* ZEUS ELISA para muestras derivadas de personas vacunadas con antígenos de *B. burgdorferi*.

RESULTADOS PREVISTOS

El valor de los anticuerpos del tipo IgM frente a *B. burgdorferi* alcanza su punto álgido de tres a seis semanas después del inicio del EM y empieza a disminuir progresivamente a partir de entonces (10). El valor de los anticuerpos del tipo IgG es bajo en presencia del EM, pero aumenta durante el curso de la enfermedad y alcanza su punto álgido en presencia de artritis (10). Los anticuerpos del tipo IgG pueden permanecer elevados durante años (11). Ciertos estudios han demostrado que más del 90 % de los pacientes con EM presenta valores elevados de los anticuerpos del tipo IgM (10, 12). En ausencia del EM, el resultado positivo de un ensayo ELISA podría diferenciar el inicio de la infección por *B. burgdorferi* de otras afecciones febriles (10). No obstante, un porcentaje muy inferior de pacientes presenta una cifra elevada de anticuerpos del tipo IgM cuando se les hace el análisis durante las tres primeras semanas posteriores a la aparición del EM (6, 13). Para contar con un panorama serológico más completo sobre estos pacientes, deben analizarse sueros agudos y de convalecientes. La mayor parte de los pacientes (94 - 97 %) con complicaciones neurológicas y prácticamente todos los pacientes con artritis presentan valores elevados de IgG frente a las espiroquetas (6, 12). En las etapas tardías, los análisis positivos para anticuerpos pueden ayudar a distinguir la enfermedad por *B. burgdorferi* de las meningitis víricas o las parálisis sin causa aparente. Los análisis positivos para anticuerpos resultan especialmente útiles a la hora de diferenciar la artritis por *B. burgdorferi* de la artritis reumatoide, la artritis reumatoide juvenil y el síndrome de Reiter (10). Los pacientes que no presentan ni los signos ni el cuadro clínico característicos de la enfermedad por *B. burgdorferi* deberían dar negativo en los análisis realizados con el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA.

EFICACIA DIAGNÓSTICA

Estudio comparativo

Se comparó el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA con un ensayo ELISA comercial y un ensayo IFA frente a *B. burgdorferi* de referencia para la detección de anticuerpos en dos ensayos clínicos con doble enmascaramiento. El primer ensayo comparó el sistema de análisis de IgG/IgM frente a *B. burgdorferi* ZEUS ELISA con un sistema de análisis IFA frente a *B. burgdorferi* comercial para la detección de anticuerpos en 199 muestras de suero procesadas de forma aleatoria en un gran centro médico de la costa este de los EE. UU. La tabla 1 recoge los resultados de este ensayo con doble enmascaramiento.

Tabla 1: Sistema de análisis de IgG/IgM frente a Borrelia burgdorferi ZEUS ELISA y sistema de IFA comercial

		Sistema de análisis de IgG/IgM fren	nte a Borrelia burgdorferi ZEUS ELISA
		Positivo	Negativo
Procedimiento de IFA	Positivo	58	5
para <i>B. Burgdorferi</i>	Negativo	7	129

El análisis de los datos de la tabla 1 indica una sensibilidad del 92 %, una especificidad del 95 % y una concordancia general del 94 %.

El segundo ensayo comparó el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA con un sistema de análisis IFA frente a *B. burgdorferi* de referencia para la detección de anticuerpos del tipo IgG e IgM en 263 muestras de suero procesadas de forma aleatoria en un gran laboratorio de referencia. La tabla 2 recoge los resultados de este ensayo con doble enmascaramiento.

Tabla 2:		Sistema de análisis de IgG/IgM frente a Borrelia burgdorferi ZEUS ELISA			
		Positivo	Negativo		
B. burgdorferi de referencia	Positivo	11	2		
IFA de detección de IgG/IgM	Negativo	8	242		

El análisis estadístico de los datos de la tabla 2 indica una sensibilidad del 85 % y una especificidad del 97 %. La concordancia general fue del 96 %.

Cuando se repitieron los resultados dudosos, se obtuvieron resultados idénticos en ambos ensayos. Además, los resultados indicaron que las muestras de suero positivas para IgM/negativas para IgG (7) dieron resultados positivos con el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA. Por otro lado, el análisis de un conjunto de muestras de suero positivas para IgM/negativas para IgG dio positivo con el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA. Estos resultados indican que el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA es capaz de detectar anticuerpos específicos de los tipos IgG e IgM frente a *B. burgdorferi* en pocillos de microvaloración individuales.

La tabla 3 recoge los resultados analíticos obtenidos usando un conjunto de sueros de los CDC. El objetivo de la presentación de estos resultados es ofrecer información adicional sobre la eficacia del análisis con un grupo de sueros caracterizado y enmascarado. Esto no significa que los CDC respalden este análisis.

Tabla 3: Grupo de sueros con B. burgdorferi de los CDC estratificado por tiempo desde la aparición

Tiempo desde la aparición	Positivo	Dudoso	Negativo	Total	% de concordancia con el diagnóstico clínico
Valor de referencia	1	1	3	5	75; 3/4
< 1 mes	6	0	0	6	100; 6/6
1-2 meses	7	0	1	8	88; 7/8
3-12 meses	18	0	2	20	90; 18/20
> 1 año	8	0	0	8	100; 8/8
Total	40	1	6	47	93 (39/42 positivos) (3/4 negativos)

2. Reproducibilidad

Se determinó la variabilidad intranalítica e interanalítica desarrollando ocho duplicados de muestras positivas, dudosas y negativas durante tres días consecutivos. Los resultados de dichos análisis fueron los siguientes:

			Interanalítica						
	Desarro	ollo 1	Desa	rrollo 2	Desar	rollo 3	interanantica		
	Media	CV (%)	Media	CV (%)	Media	CV (%)	Media	CV (%)	
Negativo	0,42	16,6	0,49	5,7	0,49	5,7	0,47	7,0	
Positivo	1,65	6,8	1,63	3,1	1,64	3,7	1,64	0,01	
Positivo	1,20	2,5	1,02	7,8	1,30	6,1	1,20	2,20	
Dudoso	0,76	15,4	0,77	5,5	0,93	2,9	0,82	9,5	

3. Eficacia diagnóstica del MACM (2-EIA)

Se llevaron a cabo los siguientes estudios con el fin de determinar la eficacia diagnóstica del sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA como análisis confirmatorio del método de análisis confirmatorio modificado (MACM) o el protocolo 2-EIA.

a. Comparación del método MACM-IgG/IgM: se utilizó El sistema de análisis de IgG/IgM frente a Borrelia burgdorferi ZEUS ELISA como análisis confirmatorio en un protocolo MACM, según se indica en el siguiente diagrama de flujo. El sistema de EIA que se usó para el análisis inicial fue el sistema de análisis de IgG/IgM para VISE1/pepC10 frente a Borrelia ZEUS ELISA. Se evaluó la eficacia del MACM-IgG/IgM frente a la del MACE por medio de dos cohortes independientes: una cohorte retrospectiva y una cohorte prospectiva.

Diagrama de flujo: protocolo del MACM-IgG/IgM

b. Análisis de la cohorte retrospectiva: La cohorte retrospectiva, conformada por 356 muestras, estuvo compuesta por las 280 muestras del grupo de muestras de los CDC, que se completaron con 46 muestras adicionales de enfermedad de Lyme (EL) de estadio II y 30 muestras adicionales de EL de estadio III. Por lo tanto, el grupo retrospectivo estuvo compuesto por 166 muestras de EL (60 de estadio I, 56 de estadio II y 50 de estadio III), 90 muestras de enfermedades distintas de la EL y 100 muestras de voluntarios sanos (50 endémicas y 50 no endémicas).

Para empezar, se analizaron las 356 muestras retrospectivas con el sistema de análisis inicial, el sistema de análisis de IgG/IgM para VIsE1/pepC10 frente a *Borrelia* ZEUS ELISA. Hubo 160 resultados positivos y 6 resultados dudosos. De acuerdo con el protocolo MACE, las muestras que arrojaron resultados positivos y dudosos (n = 166) se analizaron mediante inmunoelectrotransferencia de IgG o IgM frente a *B. burgdorferi*. De acuerdo con el protocolo MACM-IgG/IgM, estas muestras (n = 166) se analizaron usando un EIA confirmatorio: el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA. Se consideró que los resultados tanto dudosos como positivos del EIA confirmatorio eran positivos. Se sumaron los resultados dudosos a los positivos y se comparó el resultado con los resultados positivos del protocolo MACE. La tabla 4 recoge los resultados del protocolo MACM-IgG/IgM frente a los del MACE-IgM.

Tabla 4: Comparación de los resultados de los protocolos MACM-IgG/IgM y MACE (IgG o IgM) correspondientes a la cohorte retrospectiva

	Estadio I (n = 60)		Estadio II (n = 56)		Estadio III (n = 50)		Voluntarios sanos (n = 100)		Voluntarios enfermos (n = 90)	
	MACE- IgG/IgM	MACM- IgG/IgM	MACE- IgG/IgM	MACM- IgG/IgM	MACE- IgG/IgM	MACM- IgG/IgM	MACE- IgG/IgM	MACM- IgG/IgM	MACE- IgG/IgM	MACM- IgG/IgM
Positivo	38	47	34	37	50	50	0	0	0	2
Negativo	22	13	22	19	0	0	100	100	90	88
Sensibilidad o VPP	63,3 %	78,3 %	60,7 %	66,1 %	100 %	100 %	N. P.	N. P.	N. P.	N. P.
Especificidad o										
VPN	N. P.	N. P.	N. P.	N. P.	N. P.	N. P.	100 %	100 %	100 %	97,8 %

c. Análisis de la cohorte prospectiva: Se utilizó una cohorte prospectiva de muestras de suero, que se envió a un laboratorio para que se realizara un análisis serológico de *Borrelia*. Dichas muestras se recogieron en tres localizaciones distintas de los EE. UU., todas ellas situadas en zonas endémicas para la EL. Dos de las tres localizaciones (Massachusetts y Minnesota) recogieron las muestras y realizaron los análisis correspondientes mediante ELISA. Una de las localizaciones (Wisconsin) recogió las muestras y las envió al fabricante para que este realizara los análisis correspondientes mediante ELISA. La tabla 5 indica cuáles son las tres localizaciones y el número correspondiente de muestras.

Tabla 5: Resumen de la cohorte prospectiva de muestras

Tabla 5: Nesamen de la conorte prospectiva de maestras							
Localización geográfica	Tamaño de la muestra (n)						
Massachusetts	900						
Wisconsin	990						
Minnesota	1042						
Total	2932						

Para empezar, se analizaron las 2932 muestras prospectivas con el sistema de análisis inicial, el sistema de análisis de IgG/IgM para VIsE1/pepC10 frente a *Borrelia* ZEUS ELISA. Hubo 363 resultados positivos y 58 resultados dudosos. De acuerdo con el protocolo MACE, las muestras que arrojaron resultados positivos y dudosos (n = 421) se analizaron mediante inmunoelectrotransferencia de IgM o IgG frente a B. burgdorferi. De acuerdo con el protocolo MACC-IgG/IgM, estas muestras (n = 421) se analizaron usando un análisis ELISA confirmatorio: el sistema de análisis de IgG/IgM frente a *Borrelia burgdorferi* ZEUS ELISA. Se consideró que los resultados tanto dudosos como positivos del EIA confirmatorio eran positivos. Se sumaron los resultados dudosos a los positivos y se comparó el resultado con los resultados positivos del protocolo MACE. La tabla 6 recoge un resumen de los resultados del MACE frente a los del MACM-IgG/IgM:

Tabla 6: MACE-IgG/IgM frente a MACM (IgM o IgM) en la cohorte prospectiva

		MACE (IgG o IgM)		
		Positivo	Negativo	Total
MACM-IgG/IgM	Positivo	167	63**	230
	Negativo	12*	2690	2702
	Total	179	2753	2932

Concordancia positiva: 93,3 % (167/179) IC del 95 %: 88,6 - 96,12 % Concordancia negativa: 97,7 % (2690/2753) IC del 95 %: 97,1 - 98,2 %

^{*}De las 12 muestras positivas para el MACE/negativas para el MACM, se confirmó que una de las 12 correspondía a la enfermedad de Lyme de estadio I. Una muestra no presentó información clínica y las 10 restantes no presentaron información clínica congruente con la enfermedad de Lyme.

^{**}De las 63 muestras positivas para el MACM/negativas para el MACE, se confirmó que cuatro muestras correspondían a la enfermedad de Lyme (tres de estadio I y una en fase terminal). Treinta y dos muestras no presentaron información clínica y las 27 muestras restantes no presentaron información clínica congruente con la enfermedad de Lyme.

BIBLIOGRAFÍA

- Steere AC, Taylor E, Willson ML, Levine JF, Spielman A. Longitudinal assessment of the clinical and epidemiological features of Lyme Disease in a defined population. J Infect Dis 1986; 154:295-300.
- 2. Rosenfeld ME, Nowakowski J, McKenna DF, Carbonaro CA, Wormser GP. Serodiagnosis in early Lyme disease. J Clin Microbiol 1993; 31:3090-3095
- 3. Steere AC, Grodzicki RL, Komblatt AN, Craft JE, Barbour AG, Burgdorfer W, Schmid GP, Johnson E, Malawista SE. The spirochetal etiology of Lyme disease. N Engl J Med 1983;308:733-740.
- Bakken LL, Callister SM, Wand PJ, and Schell RF. Interlaboratory Comparison of Test Results for Detection of Lyme Disease by 516 Patients in the Wisconsin State Laboratory of Hygiene/College of American Pathologists Proficiency Testing Program. J. Clin. Microbiol. 1997;35:537-543.
- 5. Barbour A: Laboratory Aspects of Lyme Borreliosis. Clin Micr Rev 1988;1:399-414.
- 6. Russel H, Sampson JS, Schmid GP, Wilkinson HW, and Plikaytis B. Enzyme-linked immunosorbent assay and indirect immunofluorescence assay for Lyme disease. 1984; J Infect Dis 149(3):465-470.
- 7. Hunter EF, Russell H, Farshy CE, Sampson JS, Larsen SA. Evaluation of sera from patients with Lyme disease in the fluorescent treponemal antibody-absorption test for syphilis. 1986; Sex Trans Dis 13(4):232-236.
- 8. Shrestha M, Grodzick RL, and Steere AC: Diagnosing early Lyme disease. 1985 Am J Med 78(2):235-240.
- 9. Steere AC, Hutchinson GJ, Rahn DW, Sigal LH, Craft JE, DeSanna ET, and Malawista SE. Treatment of the early manifestations of Lyme disease. **1983**; Ann Intern Med 99(1):22-26.
- 10. Craft JE, Grodzicki RL, Shrestha M, Fischer DK, Carcia-Bianco M, Steere AC. Antibody response in Lyme disease. 1984; Yale J Biol Med 57(4):561-565.
- 11. Dammin GJ: Lyme Disease: Its transmission and diagnostic features. 1986; Lab Mgmt. 24:33.
- 12. Steere AC, Malawista SE, Bartenhagen NH, Spieler PN, Newman JH, Rahn DW, Hutchinson GJ, Green J, Snydman DR, Taylor E. The Clinical Spectrum and Treatment of Lyme disease. Yale J Biol Med 1984; 57(4):453-461.
- 13. Reik L, Smith L, Khan A, and Nelson W. Demyelinating encephalopathy in Lyme disease. 1985; Neurology 35(2):267-269.
- 14. Procedures for the collection of diagnostic blood specimens by venipuncture: NCCLS Procedure H3; Approved Standard.
- 15. Procedures for the Handling and Processing of Blood Specimens. NCCLS Document H1, Approved Guideline.
- 16. U.S. Department of Labor, Occupational Safety and Health Administration. Final Rule; 21CFR 1910.1030.
- 17. Procedures for the Handling and Processing of Blood Specimens for Common Laboratory Tests; Approved Guidelines 4th Edition (2010). CLSI Document GP44-A4 (ISBN 1-56238-724-3). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, PA 19087.
- 18. Branda JA, et al. Two-Tiered Antibody Testing for Lyme Disease With Use of 2 Enzyme Immunoassays, a Whole-Cell Sonicate Enzyme Immunoassay Followed by a VIsE C6 Peptide Enzyme Immunoassay. Clin Infect Dis 2011; 53:541–547.
- 19. Mollins CR, et al. Lyme Boreliosis Serology: Performance of Several Commonly Used Laboratory Diagnostic Tests and a Large Resource Panel of Well Characterized Patient Specimens. J Clin Microbiol 2016; 54:2726-2734.
- 20. Branda JA, et al. Advances in Serodiagnostic Testing for Lyme Disease Are at Hand. Clin Infect Dis 2018; Mar 19;66(7):1133-1139

ZEUS Scientific

200 Evans Way, Branchburg, New Jersey, 08876, EE. UU. Número gratuito (EE. UU.): 1-800-286-2111, Opción 2 Internacional: +1 908-526-3744 Fax: +1 908-526-2058

Sitio web: <u>www.zeusscientific.com</u>

ZEUS ELISA y SAVe Diluent[®] son marcas comerciales de ZEUS Scientific

Para el Servicio de Atención al Cliente en EE. UU., póngase en contacto con su distribuidor local.

Para el Soporte Técnico en EE. UU., póngase en contacto con ZEUS Scientific, llamando al número gratuito o enviando un correo electrónico a support@zeusscientific.com.
Para consultas al Servicio de Atención al Cliente y al Soporte Técnico

Para consultas al Servicio de Atención al Cliente y al Soporte Técnico en otros países, póngase en contacto con su distribuidor local.

© 2019 ZEUS Scientific Todos los derechos reservados.

